
02 - Project Notes
Here are where project notes go!!

Update #19 - VPS Admin Toolkit Menu Script
Update #18 - RKHunter Daily Scan with Email Alerting and Log Cleanup
Update #17 - Installing Root Kit Detection on Virtual Private Server
Update #16 - Installing Docker and Prepping My VPS for App Expandability.
Update #15 - Using Gmail App Password to Get Alerts!
Update #14 - Auto-Banning Fail2Ban IPs Based on AbuseIPDB Reputation
Safely Updating and Upgrading a Production VPS Server with Backup Plan
Update #13: Fail2Ban IP Lookup & Enrichment Script with GeoIP, PTR, and AbuseIPDB
Update #12 - Step-by-Step Breakdown of UFW DDNS Update Script
Reference: Commonly Used Commands & Scripts for Virtual Private Server
Update #11 - Syncthing UFW DDNS Cron Recovery & Long-Term Rule Persistence
Update #10 - Fail2Ban IP Geolocation Lookup Script with Auto Filtering
Update #9 - Syncthing UFW Log Monitoring with Active Fail2Ban Enforcement
Update #8 - Syncthing Systemd Recovery After Upgrade
Update #7 - Syncthing UFW Rule Automation with DDNS Integration
Update #6 - Fail2Ban Security Hardening - Longer Bans, Fewer Chances
Update #5 - Dynamic Fail2Ban Ignore Rule with DDNS
Update #4 - Automated Backups for BookStack on VPS - Secure & Scheduled
Update #3 - Hardening Security of the BookStack.
Command Guide To Backing Up Bookstack
Guide: Backing Up Straight From The BookStack Website
BookStack Backup Automation Every 6 Hours
Raspberri Pi 5 NAS Setup Jeff Gerling
BookStack VPS Migration & Setup Documentation

Update #19 - VPS Admin
Toolkit Menu Script
Date: June 6, 2025
Category: Automation / CLI Utilities
Backlink: Update #18 – RKHunter Daily Scan with Email
Alerting and Log Cleanup

https://docs.natenetworks.com/books/02-project-notes/page/update-18-rkhunter-daily-scan-with-email-alerting-and-log-cleanup
https://docs.natenetworks.com/books/02-project-notes/page/update-18-rkhunter-daily-scan-with-email-alerting-and-log-cleanup
https://docs.natenetworks.com/uploads/images/gallery/2025-06/nOOOxf9P7UGdmKjd-image.png

��️ Features
Interactive numbered menu with clear options
Rootkit detection and security checks
Fail2Ban IP lookup (quick and extended)
One-command BookStack backup
Update/upgrade/autoremove automation
Live process monitoring with htop
Disk usage, uptime, and CPU info summaries
Network bandwidth stats using vnstat
Emoji and figlet for enhanced terminal UX

�� Full Script: ~/Scripts/taskmenu.sh
#!/bin/bash
clear

while true; do
 figlet "Nate's Toolkit"
 echo "�� Hostname: $(hostname)"
 echo "�� IP: $(hostname -I | awk '{print $1}')"
 echo "�� Date: $(date '+%Y-%m-%d %H:%M:%S')"
 echo "======================================="
 echo "CHOOSE A NUMBER"
 echo "0.�� Exit"
 echo "1.�� System Info Summary"
 echo "2.�� Show Date"
 echo "3.�� Run Rootkit Detection"
 echo "4.✈️ Update, Upgrade, and Auto Remove"
 echo "5.�� System info and hostname"
 echo "6.�� View System Activity (htop)"
 echo "7.�� View Disk Usage"
 echo "8.�� Run System Health Check and Email Results"
 echo "9.�� Run Fail2Ban IP Lookup Quick"
 echo "10.�� Run Fail2Ban IP Lookup Extended"
 echo "11.�� Run Bookstack Backup Now"
 echo "======================================="
 echo ""
 read -p "Enter your choice: " answer

 clear
 sleep 0.5
 if ["$answer" = 0]; then
 echo "Exiting...."
 break
 elif ["$answer" = 1]; then
 echo "�� System Info Summary"
 echo ""
 echo "��️ CPU Info:"
 lscpu | grep 'Model name'
 echo ""
 echo "�� System Load:"
 uptime
 echo ""
 echo "�� Network Usage:"
 vnstat
 echo ""
 read -p "Press Enter to return to the menu..."
 clear
 elif ["$answer" = 2]; then
 figlet $(date)
 echo ""
 read -p "Press Enter to return to the menu..."
 clear
 elif ["$answer" = 3]; then
 echo "Running Rootkit Checker..."
 ~/rkhunter.sh
 echo "✅ Job Complete"
 sleep 5
 clear
 elif ["$answer" = 4]; then
 echo "�� Updating System..."
 ~/Scripts/update.sh
 echo "✅ Update Complete"
 sleep 5
 clear
 elif ["$answer" = 5]; then
 hostname && uptime
 echo ""
 read -p "Press Enter to return to the menu..."

�� Requirements
Install these tools:

 clear
 elif ["$answer" = 6]; then
 echo "�� View Top Processes (press Q to quit)..."
 sleep 1
 htop
 clear
 elif ["$answer" = 7];then
 sleep 1
 df -h /
 echo ""
 read -p "Press Enter to return to the menu..."
 clear
 elif ["$answer" = 8]; then
 sudo /usr/local/bin/healthcheck.sh
 echo ""
 read -p "Press Enter to return to the menu..."
 clear
 elif ["$answer" = 9]; then
 sudo /usr/local/bin/fail2ban-ip-lookup.sh
 echo ""
 read -p "press Enter to return to the menu..."
 clear
 elif ["$answer" = 10]; then
 sudo /usr/local/bin/fail2ban-ip-lookup-extended.sh
 echo ""
 read -p "press Enter to return to the menu..."
 elif ["$answer" = 11]; then
 sudo /usr/local/bin/bookstack-backup.sh
 echo ""
 read -p "press Enter to return to the menu..."
 else
 echo "�� invalid operation. Please choose a number on the menu."
 fi
done

Ensure supporting scripts exist:

~/rkhunter.sh
~/Scripts/update.sh
/usr/local/bin/healthcheck.sh
/usr/local/bin/fail2ban-ip-lookup.sh
/usr/local/bin/fail2ban-ip-lookup-extended.sh
/usr/local/bin/bookstack-backup.sh

�� Notes
To launch the menu easily:

Then add to your ~/.bashrc :

sudo apt install figlet vnstat htop lm-sensors

alias taskmenu='~/Scripts/taskmenu.sh'

echo "alias taskmenu='~/Scripts/taskmenu.sh'" >> ~/.bashrc

Update #18 - RKHunter
Daily Scan with Email
Alerting and Log Cleanup
Date: June 3, 2025
Category: Security / Monitoring
Backlink: Update #17 – Installing Root Kit Detection on
Virtual Private Server

Overview
This update enhances our RKHunter setup by:

Automating daily scans
Emailing warnings only (using msmtp)
Saving results to timestamped log files
Cleaning up old logs monthly

Script Location

Script Contents

/usr/local/bin/rkhunter.sh

#!/bin/bash

=== CONFIG ===

https://docs.natenetworks.com/books/02-project-notes/page/update-17-installing-root-kit-detection-on-virtual-private-server
https://docs.natenetworks.com/books/02-project-notes/page/update-17-installing-root-kit-detection-on-virtual-private-server

Scheduled Daily Cron Job
Added via root crontab:

EMAIL="natenetworks.alerts@gmail.com"
LOGFILE="/var/log/rkhunter-manual-$(date +%F).log"
WARNING_LOG="/tmp/rkhunter-warnings.log"

=== RUN RKHUNTER TASKS ===
{
 echo "=== RKHUNTER SCAN STARTED: $(date) ==="
 sudo rkhunter --update
 sudo rkhunter --propupd
 sudo rkhunter -c -sk
 echo "=== RKHUNTER SCAN FINISHED: $(date) ==="
} | tee -a "$LOGFILE"

=== EXTRACT WARNINGS ONLY ===
grep 'Warning:' /var/log/rkhunter.log > "$WARNING_LOG"

=== EMAIL IF WARNINGS EXIST ===
if [-s "$WARNING_LOG"]; then
 {
 echo "To: $EMAIL"
 echo "Subject: ⚠️ RKHunter Warning Report - $(hostname) - $(date +%F)"
 echo "Content-Type: text/plain"
 echo
 echo "RKHunter has reported warnings on $(hostname) at $(date):"
 echo
 cat "$WARNING_LOG"
 } | msmtp -t
fi

=== CLEANUP ===
rm -f "$WARNING_LOG"

sudo crontab -e

Monthly Log Cleanup
Old logs older than 30 days are purged automatically:

Email Setup
Outgoing email uses msmtp
Alerts are only sent if grep 'Warning:' finds any issues

Status
Email tested ✅
Logs cleanly date-stamped ✅
Monthly cleanup cron job added ✅
Script ownership and permissions secured ✅

30 3 * * * /usr/local/bin/rkhunter.sh

@monthly find /var/log/ -name "rkhunter-manual-*.log" -mtime +30 -delete

Update #17 - Installing Root
Kit Detection on Virtual
Private Server
Date: May 30, 2025
Category: Security / System Monitoring

I am going to install rootkit detection on my VPS. This is
good practice, although not many Linux servers are
attacked in this way.

In this guide, I'll be installing and using chkrootkit and
rkhunter .
Update and Upgrade:

Install chkrootkit :

sudo apt update && sudo apt upgrade -y

sudo apt install chkrootkit -y

Run the scan:

There was nothing found in most cases, but since I use Fail2Ban , these files are from its own test
files, which include .htpasswd and .htaccess examples. These are not actually security threats
and are normal and expected.

chrootkit flags these because .htaccess and .htpasswd can sometimes hide malicious
behavior - but in this context, they're safe.

The two .build-id are also normal and expected. They are part of the Linux Kernel's vdso
(Virtually Dynamically-linked Shared Object), which helps with performance for certain syscalls.

So this is clean, chrootkit is doing its job of alerting me of potentially dangerous file types, not
actual infections.

sudo chkrookit

https://docs.natenetworks.com/uploads/images/gallery/2025-05/levQPvxKyflnC9BY-2025-05-30-15-52-03-settings.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/qsVhSMkqZdrixZPI-2025-05-30-16-00-01-edit-page-draft-bookstack-mozilla-firefox.png

Now I'm going to move on and install RKHunter :

1.) Install RKHunter

2.) Open RKHunter's Config File:

Modify the following

Comment this out: use Ctrl + W to search the file and then type WEB_CMD

Use CTRL+W to search for UPDATE_MIRRORS and change it to 1

In this case, all flagged items are false positives.

sudo apt update
sudo apt install rkhunter -y

sudo nano /etc/rkhunter.conf

https://docs.natenetworks.com/uploads/images/gallery/2025-05/xnaIzXeXrYGVHKg0-2025-05-30-17-06-14-nathaniel-nash-all-items-1password.png

Do the same for MIRRORS_MODE and set that to 0

3.) Update RKHunter's Data Files

This is what you want it to look like, since it was freshly installed, nothing new was added:

sudo rkhunter --update

This pulls the latest rootkit definitions and mirror lists.

https://docs.natenetworks.com/uploads/images/gallery/2025-05/og1QpAfZglCoN7lK-2025-05-30-17-31-03-edit-page-draft-bookstack-mozilla-firefox.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/NZhyBHTQJmAkiPDK-2025-05-30-17-33-33-edit-page-draft-bookstack-mozilla-firefox.png

Now lets run it:

It will check for possible root kits and the output should look like this:

Now you will have to make key presses by hitting ENTER to continue, in order to automate this we
can run:

sudo rkhunter --check

sudo rkhunter --check --sk

https://docs.natenetworks.com/uploads/images/gallery/2025-05/k0xb2N77325pEQsl-2025-05-30-17-34-30-edit-page-draft-bookstack-mozilla-firefox.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/jideOtT3rV3zlP2w-image.png

or the full command:

This will be useful when saving it to a logfile or scheduling it as a cron job.

It runs the scan fully unattended.
You can save the output.
Allows for scripts or email alerts!

sudo rkhunter --check --skip-keypress

Update #16 - Installing
Docker and Prepping My VPS
for App Expandability.
Date: May 23, 2025
Category: Server Management / DevOps
Backlink: N/A (First Entry in Docker Expansion Series)

My objective was to get Docker up and running on my
existing VPS without migrating BookStack (yet). I wanted to
ensure I could containerize and run additional apps while
keeping BookStack fully operational, with no downtime
during this transition. This setup gives me the flexibility to
explore other projects in isolated environments while
preserving my current production setup.

Setting this up can be found here:
https://docs.docker.com/engine/install/ubuntu/
I'll run apt update to make sure my packages are updated.

sudo apt update

https://docs.docker.com/engine/install/ubuntu/

I also used app auto-remove to get rid of some old PHP packages:

So to install Docker, we need to build our app source line step-by-step.

Getting my system architecture:

sudo apt autoremove

dpkg --print-architecture

https://docs.natenetworks.com/uploads/images/gallery/2025-05/aWGUSrWD7egAWInU-image.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/nqo3QfuevLpGhIBm-image.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/Zs9fYvl8lhIqrWHq-image.png

So I see it is amd64

I'll also need to get my Ubuntu Codename:

So I see it is jammy

Now I can construct the Docker source line manually:

This code below writes it into the APT sources list at /etc/apt/sources.list.d/docker.list

Now we can update the packages:

So I need to re fetch and add Docker's GPG Key Securely:

lsb_release -cs

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu
jammy stable"

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu
jammy stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

I got an error like this

https://docs.natenetworks.com/uploads/images/gallery/2025-05/xUgnHFwDDMoQVNr5-image.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/hCIkmcEmj7Rvacjr-image.png

Then enure it is readable by APT:

Then update the package list again:

Proceed with installing Docker:

This installs the docker engine, CLI Tools, Container runtime,, and Docker Compose plugin (V2)

I left both services checked for restart and verified everything is installed.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
 sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

sudo chmod a+r /etc/apt/keyrings/docker.gpg

sudo apt update

sudo apt install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

https://docs.natenetworks.com/uploads/images/gallery/2025-05/V0m1tkdZO5nGhngU-dcb30c35-07c0-45cb-b6e3-2cd33c200254.png

Testing the docker installation:

I'm now ready to use docker for some of my other projects and also didn't bring down the
Bookstack at all while doing this.
Now I can enable docker with these commands:

sudo systemctl enable docker
sudo systemctl start docker

sudo usermod -aG docker $USER
Logout and back in or run: su - $USER

docker run hello-world

https://docs.natenetworks.com/uploads/images/gallery/2025-05/Sxo6gEdlMWHjmqKY-image.png

See the docker compose version:

Now I can make some project directories and change ownership and look at this for reference on
where the projects will go:

This makes 3 different folder projects:

Now I can change ownership to my user for these folders:

docker compose version

sudo mkdir -p /opt/docker/{bookstack,uptime-kuma,portainer}

sudo chown -R $USER:$USER /opt/docker

https://docs.natenetworks.com/uploads/images/gallery/2025-05/KxphVGCu3vVq5qGo-2025-05-24-06-42-20-nathaniel-nash-all-items-1password.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/5s25IwTnImCWC5vh-2025-05-24-06-43-55-editing-page-update-16-installin-bookstack-mozilla-firefox.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/789P9J0ORl2IxHtD-2025-05-24-06-50-06-nathaniel-nash-all-items-1password.png

I'm officially Docker ready.

https://docs.natenetworks.com/uploads/images/gallery/2025-05/MxbpVymXL5o6W9Xj-2025-05-24-06-53-42-editing-page-update-16-installin-bookstack-mozilla-firefox.png

Update #15 - Using Gmail
App Password to Get Alerts!
Date: May 22nd, 2025
Category: Security / Automation
Backlink: Update #14 – Auto-Banning Fail2Ban IPs Based
on AbuseIPDB Reputation

I made a new Gmail account for alerts on my VPS.

I created a new app password:

I installed a mail alert system via msmtp (Lightweight SMTP Relay Client) with Gmail Support:

https://docs.natenetworks.com/books/02-project-notes/page/update-14-auto-banning-fail2ban-ips-based-on-abuseipdb-reputation
https://docs.natenetworks.com/books/02-project-notes/page/update-14-auto-banning-fail2ban-ips-based-on-abuseipdb-reputation
https://docs.natenetworks.com/uploads/images/gallery/2025-05/b48cwIYzHBKBsIEW-2025-05-22-17-17-11-app-passwords-mozilla-firefox.png

I hit no on this screen here:

I made a hidden file using this command:

I filled in my email and app password within the file:

sudo apt update
sudo apt install msmtp msmtp-mta -y

sudo nano ~/.msmtprc

https://docs.natenetworks.com/uploads/images/gallery/2025-05/jFfaySsP7F7tPX2x-2025-05-22-17-18-20-app-passwords-mozilla-firefox.png

I secured the file using:

The 600 meaning:
6 = read (4) + write (2) = read/write for the owner
0 = no permission for group
0 = no permission for others

I tested the file by echoing myself an email:

If you have the app password set up and followed along you will get a email. It should say success
on the bottom after running the command:

You can now use this to set up alerts for all different kinds of thing which I will do.

sudo chmod 600 ~/.msmtprc

echo "Success! Email is working." | msmtp -v <your.email@here.com>

https://docs.natenetworks.com/uploads/images/gallery/2025-05/3qSBvJgDibgFdmlY-2025-05-22-17-23-26-app-passwords-mozilla-firefox.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/yso7ac8UcOwOowXP-image.png

Update #14 - Auto-Banning
Fail2Ban IPs Based on
AbuseIPDB Reputation
Date: May 22nd, 2025
Category: Security / Automation
Backlink: Update #13 – Fail2Ban IP Lookup Enrichment
Script with GeoIP, PTR, and AbuseIPDB

Overview
Building upon the foundation established in Update #13, this update introduces active
enforcement logic to permanently block IPs based on their reputation score from AbuseIPDB.

The goal is to automatically detect and firewall-block any IPs that:

Are currently banned by Fail2Ban
Have a high abuse confidence score (≥75) according to AbuseIPDB

What’s New in This Update
Feature Status

AbuseIPDB reputation score enforcement ✅

UFW rule auto-injection per IP ✅

Duplicate ban protection ✅

Detailed logging for all actions ✅

Configurable abuse score threshold ✅

https://docs.natenetworks.com/books/02-project-notes/page/update-13-fail2ban-ip-lookup-enrichment-script-with-geoip-ptr-and-abuseipdb
https://docs.natenetworks.com/books/02-project-notes/page/update-13-fail2ban-ip-lookup-enrichment-script-with-geoip-ptr-and-abuseipdb
https://docs.natenetworks.com/books/02-project-notes/page/update-13-fail2ban-ip-lookup-enrichment-script-with-geoip-ptr-and-abuseipdb

Script Location

Log Output

Logs include:

Jail name
IP
Geo/IPInfo data
PTR record (reverse DNS)
AbuseIPDB score, reports, and last report time
Auto-ban status

Script Logic Flow
1. Get banned IPs from sshd and ufw-block jails
2. For each IP:

Fetch GeoIP data from IPInfo
Perform reverse DNS lookup
Query AbuseIPDB for score and report count
If abuseConfidenceScore ≥ 75:

Check if IP is already blocked in UFW
If not, run sudo ufw deny from [IP] with a comment

3. Write all output to /var/log/fail2ban-ip-lookup.log

Script Excerpt (Auto-Ban Logic)

~/fail2ban-ip-lookup-extended.sh

/var/log/fail2ban-ip-lookup.log

if [["$abuse_score" -ge "$ABUSE_THRESHOLD"]]; then
 if sudo ufw status | grep -qw "$ip"; then
 echo -e "✅ Already blocked: $ip" | tee -a "$LOG_FILE"
 else
 echo -e "�� Auto-banning $ip due to high AbuseIPDB score ($abuse_score)" | tee -a "$LOG_FILE"

Automation (Cron Job)
To run this script automatically once per day:

Add this line (adjust path if needed):

Security Note
This approach ensures that:

Banned IPs with high global abuse reputation are firewalled at the OS level
You retain full visibility and control over what’s blocked
Only IPs caught by both local behavior (Fail2Ban) and global reports (AbuseIPDB) are
enforced

 sudo ufw deny from "$ip" comment "Auto-banned: AbuseIPDB score $abuse_score"
 fi
fi

sudo crontab -e

0 3 * * * /home/<username>/fail2ban-ip-lookup-extended.sh

Safely Updating and
Upgrading a Production VPS
Server with Backup Plan
I noticed there was upgradable packages on the VPS Server I run. Since this is the one hosting
BookStack Publicly on my Website, I wanted to treat this with as much caution as possible.

I wanted to check what was upgradable:

I leveraged AI to take a look at the packages that were upgradable and get a better understanding
for my approach:

Category Safe to Update? Notes

cloud-init ✅ Yes Handles initial cloud setup. Updating
is safe and common.

grub-efi-* ⚠️ Yes, with caution These are bootloader packages. Safe
but be cautious on production VMs. A
reboot is required after update.

app list --upgradable

https://docs.natenetworks.com/uploads/images/gallery/2025-05/D8uMSnPG6qGdklvS-2025-05-17-18-48-27-task-scheduler.png

Category Safe to Update? Notes

libldap-* ✅ Yes Core system libraries. These affect
services using LDAP but are safe to
upgrade.

monarx-agent ✅ Yes This is a Hostinger security monitoring
agent. Regularly updated.

php8.1-* ✅ Yes You’re using a PPA (deb.sury.org) for
PHP — updates are fine and likely
beneficial. Restart PHP-FPM afterward.

I decided that the quick reboot wouldn't take long and services on my site aren't in need of
scheduling a time for a reboot so I went ahead and did this while keeping an eye on the Cardinals
game. If this were a critical system with many users operating on it, I would schedule a time to do
these upgrades and restart (After-Hours) or wait until a need.

I took a snapshot of my server before running the upgrades:

https://docs.natenetworks.com/uploads/images/gallery/2025-05/r8fydJEbFzDApH8a-2025-05-17-18-50-13-overview-hostinger-mozilla-firefox.png

After the snapshot was complete, I went ahead with the update:

I Ticked the boxes to restart services (PHP, MySQL, Etc)
Then I used:

I waited for the server to come back online and made sure that php, mysql, was all up and running.

SUCCESS!!

sudo apt update
sudo apt upgrade -y

sudo reboot

https://docs.natenetworks.com/uploads/images/gallery/2025-05/C7FngTF2xwZR6l0Q-2025-05-17-18-51-36-snapshots-backups-hostinger-mozilla-firefox.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/fOW9Pgk3j1re4zs5-2025-05-17-18-53-07-snapshots-backups-hostinger-mozilla-firefox.png

Update #13: Fail2Ban IP
Lookup & Enrichment Script
with GeoIP, PTR, and
AbuseIPDB
Date: May 11, 2025
Category: Security / Automation
Backlink: Update #12 – Step-by-Step Breakdown of UFW
DDNS Update Script

Objective
Build a script to automatically extract and enrich the IP addresses banned by Fail2Ban, giving
deeper insight into:

Where attacks are coming from
Whether they’re part of known threat networks
If they’re associated with VPNs, datacenters, or residential ISPs

Tools Used
bash – for scripting
fail2ban-client – to fetch banned IPs from jails
ipinfo.io – to get geolocation and ASN details
host – to perform reverse DNS lookups (PTR)
AbuseIPDB – to identify IPs with high abuse confidence scores
jq – to parse and format JSON responses
tee – to send output to both screen and log file

https://docs.natenetworks.com/books/02-project-notes/page/update-12-step-by-step-breakdown-of-ufw-ddns-update-script
https://docs.natenetworks.com/books/02-project-notes/page/update-12-step-by-step-breakdown-of-ufw-ddns-update-script

Logrotate – to manage log size and history

Script Behavior Summary
1. Enumerates Fail2Ban Jails

Targets: sshd and ufw-block
Extracts unique banned IPs

2. Performs Lookup on Each IP
✅ ipinfo.io :

IP
Hostname
City, Region, Country
ASN & ISP
Coordinates & Timezone

✅ host : PTR (reverse DNS)
✅ AbuseIPDB :

Abuse confidence score
Total number of reports
Last reported timestamp

3. Emoji-based Output for Quick Review
�� IP address
�� PTR record
��️ Abuse summary

4. Writes to a Daily Log File
File: /var/log/fail2ban-ip-lookup.log
Rotated daily via Logrotate with:

7-day history
Compression
Ownership: root:root

Logrotate Config
Path: /etc/logrotate.d/fail2ban-ip-lookup

/var/log/fail2ban-ip-lookup.log {
 su root root
 daily
 rotate 7
 compress
 missingok
 notifempty
 create 644 root root

Example Output

API Keys & Notes
IPINFO_TOKEN and ABUSEIPDB_API_KEY are stored securely in the script (omitted here).
AbuseIPDB account was created under a free tier allowing 1000 queries/day.
Shodan integration may be added in future releases.

Future Plans
Create a filter to exclude known safe IPs from reports
Output top countries, ASNs, or ISPs from historical logs
Add optional email summary of banned IPs

}

�� IP: 137.74.246.152
"s03.cert.ssi.gouv.fr"
"Roubaix"
"Hauts-de-France"
"FR"
"AS16276 OVH SAS"
"50.6942,3.1746"
"Europe/Paris"
�� PTR: s03.cert.ssi.gouv.fr.
��️ Abuse Score: 100 | Reports: 45 | Last Reported: 2025-07-10T18:22:33Z

Update #12 - Step-by-Step
Breakdown of UFW DDNS
Update Script
Date: May 11, 2025
Category: Automation / Firewall
Backlink: Update #11 – Syncthing UFW DDNS Cron
Recovery & Long-Term Rule Persistence

Overview
This update documents the full working version of the update-syncthing-ufw.sh script, designed to
automatically update UFW rules for Syncthing ports based on the current IP address of a DDNS
hostname.

Script Location

Log File

Full Script Breakdown

/usr/local/bin/update-syncthing-ufw.sh

/var/log/update-syncthing-ufw.log

#!/bin/bash

https://docs.natenetworks.com/books/02-project-notes/page/update-11-syncthing-ufw-ddns-cron-recovery-long-term-rule-persistence
https://docs.natenetworks.com/books/02-project-notes/page/update-11-syncthing-ufw-ddns-cron-recovery-long-term-rule-persistence

Starts a bash shell script.

Specifies your DDNS hostname to resolve dynamically.

Sets the path where all log entries will be stored.

Defines an array of Syncthing-related ports (Web UI, sync port, and discovery port).

Defines a helper function for timestamp formatting.

Uses dig to resolve the IP for your DDNS and filter for valid IPv4 results.

Logs resolution status and aborts if the IP can't be resolved.

DDNS_HOST="<your-ddns-name"

LOGFILE="/var/log/update-syncthing-ufw.log"

PORTS=(
 "8384/tcp"
 "22000/tcp"
 "21027/udp"
)

timestamp() {
 date "+%Y-%m-%d %H:%M:%S"
}

RESOLVED_IP=$(dig +short "$DDNS_HOST" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$' | head -n 1)

if [[-z "$RESOLVED_IP"]]; then
 echo "$(timestamp) ❌ Failed to resolve IP for $DDNS_HOST" | tee -a "$LOGFILE"
 exit 1
else
 echo "$(timestamp) �� Resolved IP for $DDNS_HOST: $RESOLVED_IP" | tee -a "$LOGFILE"
fi

for PORT in "${PORTS[@]}"; do
 sudo ufw delete allow from any to any port "$PORT" comment 'Syncthing DDNS Access' > /dev/null 2>&1 ||
true
done

Deletes any prior rules with the comment 'Syncthing DDNS Access' silently. || true ensures the
script continues even if a rule doesn't exist.

Tracks success status across all rule additions.

Loops over each port.

If the rule already exists, log it as a no-op.

If the rule doesn’t exist, add it and log success.

If adding fails, log an error and flag the batch as partially failed.

Provides a final summary log depending on success/failure of all rule additions.

Fixes & Adjustments Made

ALL_ADDED=true

for PORT in "${PORTS[@]}"; do

 if sudo ufw status | grep -q "$PORT.*$RESOLVED_IP"; then
 echo "$(timestamp) ✳️ Rule already exists: $PORT from $RESOLVED_IP" | tee -a "$LOGFILE"

 elif sudo ufw allow from "$RESOLVED_IP" to any port "$PORT" comment 'Syncthing DDNS Access' > /dev/null
2>&1; then
 echo "$(timestamp) ✅ Rule added: $PORT from $RESOLVED_IP" | tee -a "$LOGFILE"

 else
 echo "$(timestamp) ❌ Failed to add rule: $PORT from $RESOLVED_IP" | tee -a "$LOGFILE"
 ALL_ADDED=false
 fi
done

if $ALL_ADDED; then
 echo "$(timestamp) ✅ All UFW rules successfully updated for Syncthing from $RESOLVED_IP" | tee -a
"$LOGFILE"
else
 echo "$(timestamp) ⚠️ Partial failure updating UFW rules for Syncthing from $RESOLVED_IP" | tee -a
"$LOGFILE"
fi

Fixed Permission denied errors by ensuring the script runs with sudo when needed and logs
are only written by root.
Replaced silent failures with emoji-marked status outputs (✅, ❌, ⚠️ , ✳️) for readability.
Confirmed logs rotate daily via /etc/logrotate.d/update-syncthing-ufw .

Testing & Verification
Manual execution verified with:

UFW rules confirmed using:

Log output tail:

sudo /usr/local/bin/update-syncthing-ufw.sh

sudo ufw status verbose

sudo tail -n 20 /var/log/update-syncthing-ufw.log

Reference: Commonly Used
Commands & Scripts for
Virtual Private Server
Date: May 11, 2025
Category: System Administration / BookStack
Backlink: Update #11 – Syncthing UFW DDNS Cron
Recovery & Long-Term Rule Persistence

System and Package Management

Firewall (UFW)

File and Directory Operations

sudo apt update && sudo apt upgrade -y
sudo apt install [package-name]
sudo apt autoremove -y
sudo apt autoclean

sudo ufw status verbose
sudo ufw allow 'Apache Full'
sudo ufw allow 8384/tcp # Syncthing Web UI
sudo ufw allow 22000/tcp # Syncthing Sync
sudo ufw allow 21027/udp # Syncthing Discovery
sudo ufw reload
sudo ufw delete [rule-number]

https://docs.natenetworks.com/books/02-project-notes/page/update-11-syncthing-ufw-ddns-cron-recovery-long-term-rule-persistence
https://docs.natenetworks.com/books/02-project-notes/page/update-11-syncthing-ufw-ddns-cron-recovery-long-term-rule-persistence

Services and Daemons

Crontab and Scheduling

Log Management

BookStack Backup & Restore

Common Scripts I Execute

ls -l /etc/logrotate.d/
cd /var/www/bookstack
sudo chown -R www-data:www-data /var/www/bookstack
sudo chmod -R 755 /var/www/bookstack

sudo systemctl status apache2
sudo systemctl restart apache2
sudo systemctl status fail2ban
sudo systemctl restart fail2ban
sudo systemctl enable syncthing@<username>
sudo systemctl start syncthing@<username>

sudo crontab -l
sudo crontab -e

sudo tail -f /var/log/fail2ban.log
sudo tail -f /var/log/ufw.log
sudo logrotate --debug /etc/logrotate.d/[filename]

sudo /usr/local/bin/bookstack-backup.sh
ls -lh /opt/bookstack_backups/

sudo /usr/local/bin/update-syncthing-ufw.sh
sudo /usr/local/bin/update-fail2ban-ignoreip.sh

sudo /usr/local/bin/bookstack-backup.sh
sudo /usr/local/bin/syncthing-log-summary.sh
sudo /usr/local/bin/fail2ban-syncthing-report.sh

Update #11 - Syncthing UFW
DDNS Cron Recovery &
Long-Term Rule Persistence
Date: May 11, 2025
Category: Security / Automation
Backlink: Update #10 – Fail2Ban IP Geolocation Lookup
Script with Auto-Filtering

Overview
This update builds upon our existing Syncthing and UFW/DDNS configuration and addresses the
issue of persistent firewall rules disappearing after system events such as upgrades or restarts. It
introduces mechanisms to automatically recover and persist UFW rules linked to DDNS-resolved
IPs, as well as implement log rotation for our custom scripts.

Problem Summary
UFW rules allowing DDNS-bound access to Syncthing ports (8384, 22000, 21027) were
occasionally disappearing.
There was no persistent re-application of these rules on reboot or after package upgrades.
A need existed to reduce log file size growth from regular UFW rule updates.

Key Changes Implemented
1. Syncthing DDNS-based UFW Script Improvements

Script Path: /usr/local/bin/update-syncthing-ufw.sh
Now includes:

Cleanup of old rules

https://docs.natenetworks.com/books/02-project-notes/page/update-10-fail2ban-ip-geolocation-lookup-script-with-auto-filtering
https://docs.natenetworks.com/books/02-project-notes/page/update-10-fail2ban-ip-geolocation-lookup-script-with-auto-filtering

Re-application of DDNS-resolved IP
IPv6 exception handling
Console output when run manually
Logged output when run via cron

2. Cron Automation for Rule Recovery
Location: sudo crontab -e
Jobs Added:

#!/bin/bash

DDNS_HOST="your-ddns.example.com"
PORTS=(8384/tcp 22000/tcp 21027/udp)
LOG_TAG="Syncthing DDNS Access"

Resolve IP
IP=$(dig +short "$DDNS_HOST" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$' | head -n1)

if [[-z "$IP"]]; then
 echo "❌ Failed to resolve IP for $DDNS_HOST"
 exit 1
fi

Clean up existing rules for this tag
for port in "${PORTS[@]}"; do
 ufw status numbered | grep "$LOG_TAG" | grep "$port" | awk -F'[][]' '{print $2}' | tac | while read -r num; do
 ufw --force delete "$num"
 done
done

Add new rules
for port in "${PORTS[@]}"; do
 ufw allow from "$IP" to any port "${port%/*}" proto "${port##*/}" comment "$LOG_TAG"
done

echo "✅ Cleaned and updated UFW rules for Syncthing from $IP"

Run daily at 3:00 AM
0 3 * * * /usr/local/bin/update-syncthing-ufw.sh

3. Logrotate Setup for UFW Update Logs
File: /etc/logrotate.d/update-syncthing-ufw
Content:

Additional Files and Paths
Script Path

Syncthing DDNS UFW Script /usr/local/bin/update-syncthing-ufw.sh

Cron Log File /var/log/update-syncthing-ufw.log

Logrotate Config /etc/logrotate.d/update-syncthing-ufw

Testing
Verified successful rule refresh via sudo ufw status
Confirmed script logs rotation using logrotate --debug
Confirmed cron execution via grep update-syncthing-ufw /var/log/syslog
Script executes correctly manually and via cron.

Conclusion

Run every 10 minutes, prevents overlapping runs
*/10 * * * * flock -n /tmp/ufw-ddns.lock /usr/local/bin/update-syncthing-ufw.sh >> /var/log/update-syncthing-
ufw.log 2>&1

Run on reboot
@reboot /usr/local/bin/update-syncthing-ufw.sh >> /var/log/update-syncthing-ufw.log 2>&1

/var/log/update-syncthing-ufw.log {
 su root root
 daily
 rotate 7
 compress
 missingok
 notifempty
 create 644 root root
}

This update ensures that DDNS-based access to Syncthing is consistently maintained with
automatic recovery and no risk of bloat from excessive log growth. The solution is now reliable
through reboots, daily updates, and in the event of system changes like package upgrades

Update #10 - Fail2Ban IP
Geolocation Lookup Script
with Auto Filtering
Date: May 11, 2025
Category: Security / Automation
Backlink: Update #9 – Syncthing UFW Log Monitoring with
Active Fail2Ban Enforcement

Overview
This update improves visibility into the origin of IP addresses actively banned by Fail2Ban on the
VPS. The goal was to enrich situational awareness for brute-force SSH attempts and UFW-blocked
Syncthing port scans by fetching country, city, and provider data for each offender.

What Was Implemented
A Bash script named fail2ban-ip-lookup.sh was written to:

Pull current banned IPs from the sshd and ufw-block jails
Skip link-local IPv6 addresses (fe80::/10)
Query ipinfo.io for geolocation and network information
Format and display the results cleanly with color-coded output (when using jq)

Optional jq integration was added to format the JSON neatly
The script can easily be expanded to:

Save results to logs
Exclude private IPv4 ranges (10.* , 192.168.* , etc.)
Run on a cron schedule for daily snapshots

Example Output

https://docs.natenetworks.com/books/02-project-notes/page/update-9-syncthing-ufw-log-monitoring-with-active-fail2ban-enforcement
https://docs.natenetworks.com/books/02-project-notes/page/update-9-syncthing-ufw-log-monitoring-with-active-fail2ban-enforcement
https://ipinfo.io

Script Location
Stored at:

Dependencies
curl (usually preinstalled)
jq : Install using:

Future Improvements
Add logging with timestamps
Auto-reporting for suspicious regions
Integration into BookStack as a daily monitored report

�� IP: 116.110.12.54
"116.110.12.54"
"Thanh Khê"
"Da Nang"
"VN"
"AS24086 Viettel Corporation"

�� IP: 8.222.230.39
"8.222.230.39"
"Singapore"
"Singapore"
"SG"
"AS45102 Alibaba (US) Technology Co., Ltd."

~/fail2ban-ip-lookup.sh

sudo apt install jq -y

sudo apt install jq -y

Update #9 - Syncthing UFW
Log Monitoring with Active
Fail2Ban Enforcement
Date: May 10, 2025
Category: Security / Monitoring
Backlink: Update #8 – Syncthing Systemd Recovery After
Upgrade

Overview
This update strengthens the security posture of Syncthing on the VPS by combining UFW logging
with active Fail2Ban enforcement. In addition to passively monitoring IPs attempting to access
Syncthing ports (8384, 22000, 21027), we now automatically ban repeat offenders, reducing
risk and exposure from persistent probing.

A custom Fail2Ban filter and jail were added to detect and block malicious IPs based on UFW
blocks. Link-local IPv6 traffic (fe80::/10) is ignored to avoid false positives.

Goals
Detect blocked access attempts on Syncthing ports via UFW.
Ban repeated offenders automatically using Fail2Ban.
Maintain a summarized view of access attempts for visibility.

Files and Configuration
UFW Log Summary Script
Stored at: ~/syncthing-log-summary.sh

https://docs.natenetworks.com/books/02-project-notes/page/update-8-syncthing-systemd-recovery-after-upgrade
https://docs.natenetworks.com/books/02-project-notes/page/update-8-syncthing-systemd-recovery-after-upgrade

Fail2Ban Filter: /etc/fail2ban/filter.d/ufw-block.conf

Fail2Ban Jail Configuration: /etc/fail2ban/jail.local

#!/bin/bash

Syncthing ports of interest
PORTS="8384|22000|21027"

Log file
LOGFILE="/var/log/ufw.log"

Output summary
echo "Top IPs attempting to access Syncthing ports (8384, 22000, 21027):"
echo "---"

Extract and count IPs, excluding fe80::/10 (IPv6 link-local)
sudo grep "UFW BLOCK" "$LOGFILE" | \
grep -E "DPT=($PORTS)" | \
grep -v "SRC=fe80:" | \
grep -oP 'SRC=\K\S+' | \
sort | uniq -c | sort -rn | head -20

[Definition]
failregex = \[UFW BLOCK\].*SRC=<HOST>.*DPT=(8384|22000|21027)
ignoreregex = SRC=fe80::

[ufw-block]
enabled = true
filter = ufw-block
action = iptables[name=UFW-Blocked, port=all, protocol=all]
logpath = /var/log/ufw.log
maxretry = 3
findtime = 600
bantime = 43200

This jail looks for repeated blocks on Syncthing ports and bans IPs for 12 hours
after 3 failed attempts within 10 minutes.“

 Monitoring
Run this command at any time to review the top offending IPs:

To review currently banned IPs by this jail:

To unban an IP (example):

Status
UFW logging confirmed active.
Syncthing ports protected behind dynamic DDNS-controlled rules.
Fail2Ban jail banning repeat offenders.
Link-local IPv6 traffic excluded to reduce noise.

bash ~/syncthing-log-summary.sh

sudo fail2ban-client status ufw-block

sudo fail2ban-client set ufw-block unbanip 192.0.2.1

Update #8 - Syncthing
Systemd Recovery After
Upgrade
Date: May 10, 2025
Category: System Maintenance / Automation
Backlink: Update #7 – Syncthing UFW Rule Automation
with DDNS Integration

Overview
After performing a system upgrade on the VPS hosting BookStack and Syncthing, it was discovered
that Syncthing no longer started correctly under the user-level systemctl --user session. Attempts to
restart the service resulted in a Failed to connect to bus: Connection refused error, likely due to the user
session being interrupted by the upgrade process.

The Problem
After the package upgrades, the Syncthing service appeared to be inactive.
Running:

resulted in:

systemctl --user restart syncthing

Failed to connect to bus: Connection refused

The Solution

https://docs.natenetworks.com/books/02-project-notes/page/update-7-syncthing-ufw-rule-automation-with-ddns-integration
https://docs.natenetworks.com/books/02-project-notes/page/update-7-syncthing-ufw-rule-automation-with-ddns-integration

Switched Syncthing from a user-level service to a system-wide service tied to the user account.

Steps Taken:
1. Stopped any failed user service attempts (optional but safe):

systemctl --user stop syncthing

2. Enabled the system-wide service instead:

sudo systemctl enable syncthing@<username>.service
sudo systemctl start syncthing@<username>.service

3. Verified Syncthing is active:

sudo systemctl status syncthing@<username>.service

 Optional Consideration
If future system upgrades disrupt services again, I will consider using a simple systemd timer or
cron job to periodically check and restart Syncthing, though this is not currently necessary due to
the stability of the system-wide service.

Update #7 - Syncthing UFW
Rule Automation with DDNS
Integration
Date: May 10, 2025
Category: Security / Automation
Backlink: Update #6 – Fail2Ban Security Hardening

�� Overview
This update focused on hardening access to Syncthing on the VPS. Instead of allowing unrestricted
access to the Syncthing web UI and sync ports, I created a secure and automated solution that
dynamically resolves a DDNS hostname (masked here for privacy) and updates UFW rules
accordingly. This ensures only the current home IP can connect to the Syncthing interface and sync
services.

��️ Tools & Technologies Used
Syncthing – Installed and configured on a headless Ubuntu VPS
UFW (Uncomplicated Firewall) – Manages allowed IP access
DDNS (Dynamic DNS) – Tracks home IP address
Bash Script – Automates the rule refresh process
Systemd Cron Job – Scheduled execution of the automation

�� The Process
1. Validated Syncthing Setup

Confirmed Syncthing was installed and running.
Located its config and ensured 127.0.0.1:8384 was listening.

2. Allowed Necessary Ports
Syncthing uses:

https://docs.natenetworks.com/books/02-project-notes/page/update-6-fail2ban-security-hardening-longer-bans-fewer-chances

8384/tcp – Web GUI
22000/tcp – Sync traffic
21027/udp – Local discovery

Initially opened ports to Anywhere to confirm functionality.
3. Wrote an Automation Script

I created /usr/local/bin/update-syncthing-ufw.sh to:
Resolve the DDNS hostname to a public IP.
Delete any existing UFW rules for 8384 , 22000 , and 21027 .
Add new rules allowing traffic only from the current IP.

✅ Sample success message:

✅ UFW rules updated for Syncthing services from [masked DDNS IP]

4. Confirmed It Works
Ran the script manually.
Verified UFW rules with sudo ufw status numbered .
Accessed the Syncthing Web UI remotely from home IP to confirm access.

5. Cleaned Up UFW Rules
Removed Anywhere rules for Syncthing ports.
Only the resolved DDNS IP is now allowed per service port.

6. Created a Daily Cron Job
Added the following to root's crontab:

0 */6 * * * /usr/local/bin/update-syncthing-ufw.sh

This updates the rule every 6 hours in case the home IP changes.

✅ The Result
Syncthing Web UI and sync features are only accessible from home IP.
All UFW rules now reflect the current public IP automatically.
No more manual UFW updates or security exposure.
This complements previous hardening efforts made in Update #6.

�� What I Learned
UFW’s rule numbers change dynamically; scripting is essential for removal before re-
addition.
You can safely update firewall rules on a schedule without needing manual login.
Protecting even the Web GUI of Syncthing is important in public VPS setups.
DDNS + automation = powerful security combo.

https://docs.natenetworks.com/books/02-project-notes/page/update-6-fail2ban-security-hardening-longer-bans-fewer-chances

Update #6 - Fail2Ban
Security Hardening - Longer
Bans, Fewer Chances

After implementing a dynamic ignoreip rule using my DDNS
hostname in Update #5, I proceeded to further harden my
Fail2Ban configuration. The goal was to tighten lockout
criteria and extend ban durations to reduce the risk of
brute-force attacks on my VPS.

What I Changed
Increased Ban Duration:
Set bantime to 12h so attackers are kept out for a long stretch.
Shortened Detection Window:
Set findtime to 10m , limiting how far back Fail2Ban looks for failed attempts.
Stricter Retry Limit:
Set maxretry to 3 , meaning three failed login attempts trigger a ban.
Updated jail.local Configuration:

 Note: The <dynamic-ip-from-ddns> is automatically updated via a custom script that resolves my
DDNS hostname and inserts the current IP.

[DEFAULT]
ignoreip = 127.0.0.1 <dynamic-ip-from-ddns>
bantime = 12h
findtime = 10m
maxretry = 3

https://docs.natenetworks.com/books/02-project-notes/page/update-5-dynamic-fail2ban-ignore-rule-with-ddns

Verification
To confirm the configuration was working as expected, I ran:

This verified that failed attempts were being logged, and offenders were banned promptly after 3
failures.

Result
The system is now more secure, allowing fewer login attempts and keeping bad actors out longer.
With dynamic DDNS-based whitelisting and aggressive jail parameters, my SSH service is much
better protected going forward.

sudo fail2ban-client status sshd
sudo tail -f /var/log/fail2ban.log

Update #5 - Dynamic
Fail2Ban Ignore Rule with
DDNS

Update #5
Dynamic Fail2Ban Ignore Rule with DDNS

Overview
To enhance security while ensuring admin access from a dynamic IP address, I created a script that
automatically resolves my home DDNS address.

and updates Fail2Ban’s ignoreip rule accordingly. This ensures my home IP is always
whitelisted—even as it changes—preventing accidental lockouts.

Objective
Automatically update Fail2Ban’s ignoreip field with the resolved IP address of a DDNS hostname
and restart the service.

Components Used
Ubuntu 22.04 VPS
Fail2Ban
DDNS hostname
Bash scripting
Cron for automation (optional)

Script Path
/usr/local/bin/update-fail2ban-ignoreip.sh

Script Logic
1. Uses dig to resolve the current IP of the DDNS hostname.
2. Backs up /etc/fail2ban/jail.local .
3. Replaces the existing ignoreip line with a new one including 127.0.0.1 and the resolved

DDNS IP.
4. Restarts the Fail2Ban service.

Setup Steps
Create the script:

1.
Paste the script above, change it to YOUR-DDNS-SERVER - save and exit.

sudo nano /usr/local/bin/update-fail2ban-ignoreip.sh

#!/bin/bash

Resolve DDNS to IP
DDNS_HOST="YOUR-DDNS-NAME-HERE"
RESOLVED_IP=$(dig +short "$DDNS_HOST" | grep -Eo '([0-9]{1,3}\.){3}[0-9]{1,3}' | head -n1)

Path to jail.local
JAIL_LOCAL="/etc/fail2ban/jail.local"

Backup original
cp "$JAIL_LOCAL" "$JAIL_LOCAL.bak"

Update ignoreip in jail.local
sed -i "/^ignoreip =/c\ignoreip = 127.0.0.1 $RESOLVED_IP" "$JAIL_LOCAL"

Restart Fail2Ban
systemctl restart fail2ban

Make it executable:

Run it manually to verify:

sudo /usr/local/bin/update-fail2ban-ignoreip.sh

Verification
Checked with:

 Confirmed the new IP is listed in ignoreip .

sudo cat /etc/fail2ban/jail.local

Validated Fail2Ban is running:

sudo systemctl status fail2ban

Optional: Automate with Cron
To run the update daily:

Add:

Result
Fail2Ban now dynamically ignores my home IP—even though it’s behind a DDNS—and I no longer
risk locking myself out while administering my VPS.

sudo crontab -e

0 3 * * * /usr/local/bin/update-fail2ban-ignoreip.sh

Update #4 - Automated
Backups for BookStack on
VPS - Secure & Scheduled
Update #4
As part of hardening and maintaining my public BookStack instance
hosted on a VPS, I implemented a secure, automated backup system
using shell scripting and cron. This ensures my database and uploaded
files are regularly archived and protected against data loss - without
exposing sensitive information in scripts.

The Setup
VPS: Ubuntu 22.04 LTS (Hostinger)
Web Stack: Apache, MySQL, PHP 8.2 (LAMP stack)
Application: BookStack (latest stable)
Backup Destination: /opt/bookstack_backups/ on the VPS
Security Enhancements:

fail2ban active
SSH hardening complete
UFW configured to allow only necessary services

The Process
1. Created a Shell Script

A custom script (/usr/local/bin/bookstack-backup.sh) was written to:
Dump the MySQL bookstack database

Archive important BookStack directories (such as
/var/www/bookstack/public/uploads and /var/www/bookstack/storage/uploads)
Rotate old backups by removing any older than 7 days

2. Secured MySQL Credentials
Rather than placing the database password in the script (which is insecure),
credentials were stored securely in the root user's ~/.my.cnf file:

[client]
user=bookstack
password=your_db_password

3. Tested the Script
Verified manual execution of the script:

Confirmed .sql dumps and .tar.gz files were created correctly
Ensured proper permissions and ownership of backup files

4. Scheduled Daily Cron Job
Added the script to root’s crontab to run automatically at 2:00 AM each day:

0 2 * * * /usr/local/bin/bookstack-backup.sh

Sample Output
Backup files generated daily look like:

/opt/bookstack_backups/bookstack_2025-05-09.sql
/opt/bookstack_backups/bookstack_files_2025-05-09.tar.gz

What I Learned
Avoid using mysqldump passwords in scripts — ~/.my.cnf is a secure alternative.
Giving the database user PROCESS privilege was necessary to prevent dump errors.
Always verify permissions and script execution manually before automating via cron.
Storing backups under /opt/ keeps them cleanly separated from web content.

Update #3 - Hardening
Security of the BookStack.

After migrating my BookStack documentation system to a
public-facing VPS, my next priority was to harden the
server. The goal was to lock down remote access, guard
against brute-force attacks, and ensure the system was
updated automatically, all while maintaining reliable access
for legitimate admin use.

The Setup
The VPS is running Ubuntu 22.04 LTS, hosting BookStack on a full LAMP stack. With the public
site live, it was time to secure the perimeter.

The Process
1. Hardened SSH Configuration
I edited /etc/ssh/sshd_config to improve SSH security:

Disabled root login
Disabled password-based authentication
Enforced key-based authentication

Once updated, I restarted SSH:

2. Enabled UFW Firewall
I verified UFW firewall settings to ensure only necessary traffic was allowed:

OpenSSH for SSH access
Apache Full for BookStack

3. Installed and Configured Fail2Ban
Fail2Ban helps block brute-force attacks. After installation, it was monitoring the SSH log (
/var/log/auth.log).

sudo systemctl restart ssh

sudo apt install fail2ban

https://docs.natenetworks.com/uploads/images/gallery/2025-05/V38RYHMj5VKKBM6R-2025-05-04-15-10-31-greenshot.png

Screenshot: Fail2Ban Jail Status

4. Enabled Unattended Security Updates
To keep the VPS patched automatically, I installed and configured unattended upgrades:

This ensures security updates are applied daily with minimal overhead.

The Result
The VPS is now protected with hardened SSH access, firewall filtering, brute-force detection, and
automatic security patching, while keeping full control over my public documentation setup.

What I Learned

sudo apt install unattended-upgrades
sudo dpkg-reconfigure unattended-upgrades

https://docs.natenetworks.com/uploads/images/gallery/2025-05/ojLQTcEUAbErY8Vi-2025-05-04-15-18-44-greenshot.png
https://docs.natenetworks.com/uploads/images/gallery/2025-05/FXhajLcESi3DuYYP-2025-05-04-15-19-00-greenshot.png

A single open SSH port can attract attention fast
Disabling root login and passwords makes a big difference
Fail2Ban provides great peace of mind
UFW simplifies firewall management
Automated updates are essential for long-term hardening

Command Guide To Backing
Up Bookstack
This is done for this bookstack here.

Changing to the projects directory /var/www/bookstack

Use mysqldump
-u is for user
-p is for password
*the bookstack following the -p in the code is the name of the database and not the
password. You will enter the password.*
This will make you enter a password for the mysql root user in order to backup the database.
*Change the date, I will update this code to use the current time instead of manually putting it in.

Copying that backup file to the network share example:

Backup the Storage / Uploads / Themes / Public

Copy that to the network share:

The backup is now on the network share...

cd /var/www/bookstack

sudo mysqldump -u root -p bookstack | sudo tee bookstack.backup_3_28_24.sql > /dev/null

sudo cp -r bookstack.backup_3_28_24.sql /mnt/localcloud/BookStack_Backups/

sudo tar -czvf bookstack-files-backup_3_28_24.tar.gz .env public/uploads storage/uploads themes

cp bookstack-files-backup_3_28_24.tar.gz /mnt/localcloud/BookStack_Backups/

Guide: Backing Up Straight
From The BookStack
Website
Backup
There are two types of content you need to backup: Files and database records.

Database
The easiest way to backup the database is via mysqldump :

Syntax
Only specify the `-p` option if the user provided has a password
mysqldump -u {mysql_user} -p {database_name} > {output_file_name}

Example
mysqldump -u benny bookstack > bookstack.backup.sql

If you are using MySQL on Ubuntu, and are using the root MySQL user, you will likely have to run
the command above with sudo :

sudo mysqldump -u root bookstack > bookstack.backup.sql

The resulting file (bookstack.backup.sql in the examples above) will contain all the data from the
database you specified. Copy this file to somewhere safe, ideally on a different device.

Files

Below is a list of files and folders containing data you should back up. The paths are shown relative
to the root BookStack folder.

.env - File, contains important configuration information.
public/uploads - Folder, contains any uploaded images.
storage/uploads - Folder, contains uploaded page attachments.
themes - Folder, contains any configured visual/logical themes.

Alternatively you could backup up your whole BookStack folder but only the above contain
important instance-specific data by default.

The following command will create a compressed archive of the above folders and files:

tar -czvf bookstack-files-backup.tar.gz .env public/uploads storage/uploads themes

The resulting file (bookstack-files-backup.tar.gz) will contain all your file data. Copy this to a safe
place, ideally on a different device.

Restore
If you are restoring from scratch follow the installation instructions first to get a new BookStack
instance set-up but do not run the php artisan migrate installation step when installing
BookStack. You may need to comment this command out if using an installer script.

If you are using a docker-container-based set-up, restore the database before running the
BookStack container. An example of the process using a linuxserver.io-based docker-compose
setup can be seen in our video here.

Database
To restore the database you simply need to execute the sql in the output file from the mysqldump
you performed above. To do this copy your database SQL backup file onto the BookStack or
database host machine and run the following:

https://www.bookstackapp.com/docs/admin/hacking-bookstack/#visual-theme-system
https://www.bookstackapp.com/docs/admin/installation
https://youtu.be/6A8hLuQTkKQ?t=1050

Syntax
mysql -u {mysql_user} -p {database_name} < {backup_file_name}
Only specify the -p if the user provided has a password

Example
mysql -u benny -p bookstack < bookstack.backup.sql

If using the root user on Ubuntu you may
have to run the above with root permissions via sudo:
sudo mysql -u root bookstack < bookstack.backup.sql

If you are restoring to a new version of BookStack you will have to run php artisan migrate after
restore to perform any required updates to the database.

Files
To restore the files you simply need to copy them from the backup archive back to their original
locations. If you created a compressed bookstack-files-backup.tar.gz archive as per the backup
instructions above you can simply copy that file to your BookStack folder then run the following
command:

tar -xvzf bookstack-files-backup.tar.gz

If you get errors during the above command it may be due to permissions. Change permissions so
you can write to the restore locations.

After a backup of the files you should reset the permissions to ensure any write-required locations
are writable by the server. The locations required for this can be found in the installation
instructions.

Configuration (.env File)
During a restore, you may end up merging various configuration options between your old and new
instance .env files, to get things working for the new environment. For example, it’s common to
use the old .env settings for most things but use database settings from the .env file of a newly
created instance.

https://www.bookstackapp.com/docs/admin/installation
https://www.bookstackapp.com/docs/admin/installation

One thing to be aware of is that you should use the APP_KEY value of the old .env file since this is
used for various features like the encryption of multi-factor authentication credentials. Changing
the APP_KEY may cause such features to break.

URL Changes
If you are restoring into an environment where BookStack will run on a different URL, there are a
couple of things you’ll need to do after restoring everything:

Within the .env config file update the APP_URL value to exactly match your new base URL.
Run the “Update System URL” command to update your database content to use your
new URL.

If you migrated web-server configuration files, you may also need to tweak those to correctly use
the new URL.

https://www.bookstackapp.com/docs/admin/commands/#update-system-url

BookStack Backup
Automation Every 6 Hours
Creating a script to automate your BookStack backup process is definitely feasible, even with the
requirement to input a password for the `mysqldump` command. You can streamline the process
with a script that bundles these steps together. However, automating password input for `
mysqldump` securely can be a bit tricky due to security concerns with storing plaintext
passwords. Here’s a general approach to handle this:

Automating `mysqldump` Without Exposing Passwords

Instead of embedding the MySQL password in the script, you can use a configuration file (`
~/.my.cnf`) for the user running the backup. This file stores the MySQL credentials and allows `
mysqldump` to access them without requiring them to be input manually or stored in the script.

1. Create the MySQL Configuration File:

 On the user’s home directory that will run the backup, create a file named `.my.cnf`:

 Add the following content, replacing `your_password` with the MySQL root password:

Secure the file by setting its permissions so that only the owner can read and write:

Writing the Backup Script

Now, let’s create a script that encompasses your backup steps. The script will not require manual
password entry due to the use of the `.my.cnf` configuration.

sudo nano ~/.my.cnf

 [mysqldump]
 user=root
 password=your_password

chmod 600 ~/.my.cnf

#!/bin/bash

Explanation: This script backs up the database using `mysqldump`, directing the output to a file
in your network share directory. It also creates a tarball of your specified directories and stores it
alongside the database backup. The `date` command is used to append the current date to the
filenames, automating the date management process.

Running the Script Automatically

To run this script automatically, you can use `cron`:

1. Open the current user’s crontab:

2. **Add a cron job to run the script at your desired frequency.** For example, to run it daily at 1
AM:

3. Here's how to do it every 6 hours, and also pointing at the right path to my installation of
bookstack.

Variables
BACKUP_DIR="/mnt/localcloud/BookStack_Backups"
DATE=$(date +"%m_%d_%Y")
DB_BACKUP_FILE="bookstack_db_backup_$DATE.sql"
FILES_BACKUP_FILE="bookstack_files_backup_$DATE.tar.gz"

Navigate to the projects directory
cd /var/www/bookstack

Database backup
mysqldump bookstack | sudo tee "$BACKUP_DIR/$DB_BACKUP_FILE" > /dev/null

Backup the Storage / Uploads / Themes / Public
sudo tar -czvf "$BACKUP_DIR/$FILES_BACKUP_FILE" .env public/uploads storage/uploads themes

echo "Backup completed and stored in $BACKUP_DIR"

crontab -e

0 1 * * * /path/to/your/backup_script.sh

0 */6 * * * /home/zippyb/backupbookstack.sh

Replace `/path/to/your/backup_script.sh` with the actual path to your script. Make sure the script is
executable (`chmod +x backup_script.sh`).

Important Considerations

- Security: Ensure that the `.my.cnf` file and the backup script are securely stored and accessible
only by trusted users.
- Backup Rotation: This script doesn’t handle backup rotation (deleting old backups to save
space). You might want to add logic to delete backups older than a certain number of days.
- Testing: Test your backup and restoration process to ensure it works as expected before relying
on it for production use.

This setup provides a basic framework. Depending on your specific needs and environment, you
may need to adjust paths, permissions, or other details.

Raspberri Pi 5 NAS Setup Jeff
Gerling

https://www.youtube.com/embed/l30sADfDiM8?si=Rx0h3OZkWoIfA_Kj

https://www.youtube.com/embed/l30sADfDiM8?si=Rx0h3OZkWoIfA_Kj

BookStack VPS Migration &
Setup Documentation
Summary

This documentation outlines the successful migration of a
self-hosted BookStack instance from a local Proxmox
environment to a cloud-hosted VPS. The goal was to
maintain all user data, uploaded content, and configuration
with minimal downtime.

�� Live Instance: https://docs.natenetworks.com

��️ Technologies Used
Infrastructure

Host Provider: Hostinger VPS
Operating System: Ubuntu Server 22.04 LTS
Architecture: 64-bit KVM VPS

Core Stack (LAMP)
Web Server: Apache 2
Database: MariaDB (MySQL-compatible)
PHP: 8.2 with required extensions
Application: BookStack v24.02.2 (Laravel-based)

Domain Configuration
DNS: A record for docs.natenetworks.com pointing to VPS public IP
URL Configuration: Set in .env and updated via artisan command

https://docs.natenetworks.com

Tools Used
SSH Client: PuTTY
SFTP Client: WinSCP
Source Control: Git
PHP Dependency Manager: Composer
Laravel CLI: Artisan

�� Migration Process
1. VPS Preparation
Logged into the VPS via SSH and installed required packages:

2. BookStack Deployment
Cloned the official BookStack repository:

Installed PHP dependencies:

Set correct file permissions:

3. Configuration
Restored .env file from backup
Updated APP_URL to: https://docs.natenetworks.com

sudo apt update && sudo apt upgrade -y
sudo apt install apache2 mariadb-server php8.2 php8.2-common php8.2-cli php8.2-mbstring php8.2-curl php8.2-
xml php8.2-mysql unzip git curl composer

sudo git clone https://github.com/BookStackApp/BookStack.git /var/www/bookstack
cd /var/www/bookstack
git checkout 24.02.2

composer install --no-dev --optimize-autoloader

sudo chown -R www-data:www-data /var/www/bookstack
sudo chmod -R 755 /var/www/bookstack

Verified required PHP extensions
Ensured Apache service was active

4. Database Setup
Created database and user credentials for BookStack
Restored MySQL dump from local backup:

5. File Migration
Uploaded archive of uploaded files and customizations via SFTP, then extracted:

6. Laravel Maintenance Commands
Cleared and rebuilt application cache:

Updated stored URLs in the database:

7. Final Testing
Restarted Apache and verified everything was operational:

Public site loaded successfully
All pages, users, and uploads migrated cleanly
Admin accounts remained intact

mysql -u bookstack -p bookstack < /tmp/bookstack.backup_5_3_25.sql

tar -xzf /tmp/bookstack-files-backup_5_3_25.tar.gz -C /var/www/bookstack

php artisan config:clear
php artisan cache:clear
php artisan view:clear

php artisan bookstack:update-url http://192.168.1.236 https://docs.natenetworks.com

sudo systemctl restart apache2

�� Notes
All user and admin accounts retained post-migration
SQL and file backups preserved externally
Public/private visibility was maintained
SMTP email is not currently configured (.env uses defaults)

Migration Date: May 4th, 2025
Lead Engineer: Nathaniel Nash
Environment: Production (Public Access)

