
\

Brief Introduction of Splunk

The Internet of Things (IoT) and Internet of Bodies (IoB) generate much data, and searching

for a needle of datum in such a haystack can be daunting.

Splunk is a Big Data mining tool. With Splunk, not only is it easier for users to excavate and

analyze machine-generated data, but it also visualizes and creates reports on such data.

Splunk Enterprise search results on sample data

Splunk contains three processing components:

● The Indexer parses and indexes data added to Splunk.

● The Forwarder (optional) sends data from a source.

Splunk Cheat Sheet

https://docs.splunk.com/Documentation/Splunk/9.0.0/SearchTutorial/Systemrequirements#Download_the_tutorial_data_files
https://docs.splunk.com/Splexicon:Indexer
https://docs.splunk.com/Documentation/Splunk/9.0.0/SearchTutorial/GetthetutorialdataintoSplunk
https://docs.splunk.com/Splexicon:Forwarder

\

● The Search Head is for searching, analyzing, visualizing, and summarizing your data.

Search Language in Splunk

Splunk uses what’s called Search Processing Language (SPL), which consists of keywords,

quoted phrases, Boolean expressions, wildcards (*), parameter/value pairs, and comparison

expressions. Unless you’re joining two explicit Boolean expressions, omit the AND operator

because Splunk assumes the space between any two search terms to be AND.

Basic Search offers a shorthand for simple keyword searches in a body of indexed data

myIndex without further processing:

index=myIndex keyword

An event is an entry of data representing a set of values associated with a timestamp. It can

be a text document, configuration file, or entire stack trace. Here is an example of an event

in a web activity log:

[10/Aug/2022:18:23:46] userID=176 country=US paymentID=30495

Search commands help filter unwanted events, extract additional information, calculate

values, transform data, and statistically analyze the indexed data. It is a process of

narrowing the data down to your focus. Note the decreasing number of results below:

https://docs.splunk.com/Splexicon:Searchhead

\

Finding entries without IPv4 address on sample data

Common Search Commands

Command Description
chart, timechart Returns results in a tabular output for (time-series) charting
dedup X Removes duplicate results on a field X
eval Calculates an expression (see Calculations)
fields Removes fields from search results
head/tail N Returns the first/last N results, where N is a positive integer
lookup Adds field values from an external source
rename Renames a field. Use wildcards (*) to specify multiple fields.
rex Extract fields according to specified regular expression(s)
search Filters results to those that match the search expression
sort X Sorts the search results by the specified fields X
stats Provides statistics, grouped optionally by fields
mstats Similar to stats but used on metrics instead of events
table Displays data fields in table format.
top/rare Displays the most/least common values of a field
transaction Groups search results into transactions
where Filters search results using eval expressions. For comparing two

different fields.

SPL Syntax

Begin by specifying the data using the parameter index, the equal sign =, and the data

index of your choice: index=index_of_choice.

Complex queries involve the pipe character |, which feeds the output of the previous query

into the next.

https://docs.splunk.com/Documentation/Splunk/9.0.0/SearchTutorial/Systemrequirements#Download_the_tutorial_data_files
https://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Transaction

\

Basic Search

This is the shorthand query to find the word hacker in an index called cybersecurity:

index=cybersecurity hacker

SPL search terms Description

Full Text Search

Cybersecurity Find the word “Cybersecurity” irrespective of
capitalization

White Black Hat Find those three words in any order irrespective
of capitalization

"White Black+Hat" Find the exact phrase with the given special
characters, irrespective of capitalization

Filter by fields

source="/var/log/myapp/access

.log" status=404

All lines where the field status has value 404

from the file /var/log/myapp/access.log

source="bigdata.rar:*"

index="data_tutorial"

Code=RED

All entries where the field Code has value RED

in the archive bigdata.rar indexed as
data_tutorial

index="customer_feedback"

_raw="*excellent*"

All entries whose text contains the keyword
“excellent” in the indexed data set
customer_feedback

Filter by host

host="myblog"

source="/var/log/syslog"

Fatal

Show all Fatal entries from

/var/log/syslog belonging to the blog host
myblog

Selecting an index

index="myIndex" password Access the index called myIndex and text

matching password.

source="test_data.zip:*" Access the data archive called
test_data.zip and parse all its entries (*).

sourcetype="datasource01" (Optional) Search data sources whose type is
datasource01.

This syntax also applies to the arguments following the search keyword. Here is an example

of a longer SPL search string:

index=* OR index=_* sourcetype=generic_logs | search

Cybersecurity | head 10000

In this example, index=* OR index=_* sourcetype=generic_logs is the data body

on which Splunk performs search Cybersecurity, and then head 10000 causes

Splunk to show only the first (up to) 10,000 entries.

Basic Filtering

You can filter your data using regular expressions and the Splunk keywords rex and regex.

An example of finding deprecation warnings in the logs of an app would be:

index="app_logs" | regex error="Deprecation Warning"

\

SPL filters Description Examples

search Find keywords and/or fields
with given values

● index=names | search Chris

● index=emails | search

emailAddr="*mysite.com"

regex Find expressions matching a
given regular expression

Find logs not containing IPv4 addresses:
index=syslogs | regex

!="^\d{1,3}.\d{1,3}\.\d{1,3}\.

\d{1,3}"

rex Extract fields according to
specified regular
expression(s) into a new field
for further processing

Extract email addresses:
source="email_dump.txt" | rex

field=_raw "From:

<(?<from>.*)> To: <(?<to>.*)>"

The biggest difference between search and regex is that you can only exclude query

strings with regex. These two are equivalent:

● source="access.log" Fatal

● source="access.log" | regex _raw=".*Fatal.*"

But you can only use regex to find events that do not include your desired search term:

● source="access.log" | regex _raw!=".*Fatal.*"

The Splunk keyword rex helps determine the alphabetical codes involved in this dataset:

https://docs.splunk.com/Documentation/Splunk/9.0.0/SearchReference/Rex

\

Alphabetical codes in sample data

Calculations

Combine the following with eval to do computations on your data, such as finding the mean,

longest and shortest comments in the following example:

index=comments | eval cmt_len=len(comment) | stats

avg(cmt_len), max(cmt_len), min(cmt_len) by index

Function Return value / Action Usage:
eval foo=…

abs(X) absolute value of X abs(number)

case(X,"Y",…) Takes pairs of arguments X and Y, where X
arguments are Boolean expressions. When
evaluated to TRUE, the arguments return the
corresponding Y argument

case(id == 0,

"Amy", id ==

1,"Brad", id ==

2, "Chris")

ceil(X) Ceiling of a number X ceil(1.9)

cidrmatch("X",

Y)

Identifies IP addresses that belong to a
particular subnet

cidrmatch("123.

132.32.0/25",ip

)

https://docs.splunk.com/Documentation/Splunk/9.0.0/SearchTutorial/Systemrequirements#Download_the_tutorial_data_files

\

coalesce(X,…) The first value that is not NULL coalesce(null()

, "Returned

val", null())

cos(X) Cosine of X n=cos(60) #1/2

exact(X) Evaluates an expression X using double
precision floating point arithmetic

exact(3.14*num)

exp(X) e (natural number) to the power X (eX) exp(3)

if(X,Y,Z) If X evaluates to TRUE, the result is the
second argument Y. If X evaluates to FALSE,
the result evaluates to the third argument Z

if(error==200,

"OK", "Error")

in(field,value

list)

TRUE if a value in valuelist matches a

value in field. You must use the in()

function embedded inside the if() function

if(in(status,

"404","500","50

3"),"true","fal

se")

isbool(X) TRUE if X is Boolean isbool(field)

isint(X) TRUE if X is an integer isint(field)

isnull(X) TRUE if X is NULL isnull(field)

isstr(X) TRUE if X is a string isstr(field)

len(X) Character length of string X len(field)

like(X,"Y") TRUE if and only if X is like the SQLite

pattern in Y

like(field,

"addr%")

log(X,Y) Logarithm of the first argument X where the
second argument Y is the base. Y defaults to
10 (base-10 logarithm)

log(number,2)

lower(X) Lowercase of string X lower(username)

ltrim(X,Y) X with the characters in Y trimmed from the
left side. Y defaults to spaces and tabs

ltrim("

ZZZabcZZ ", "

Z")

match(X,Y) TRUE if X matches the regular expression
pattern Y

match(field,

"^\d{1,3}\.\d$"

)

max(X,…) The maximum value in a series of data X,… max(delay,

mydelay)

md5(X) MD5 hash of a string value X md5(field)

min(X,…) The minimum value in a series of data X,… min(delay,

mydelay)

mvcount(X) Number of values of X mvcount(multifi

eld)

mvfilter(X) Filters a multi-valued field based on the
Boolean expression X

mvfilter(match(

email, "net$"))

mvindex(X,Y,Z) Returns a subset of the multi-valued field X
from start position (zero-based) Y to Z
(optional)

mvindex(multifi

eld, 2)

mvjoin(X,Y) Joins the individual values of a multi-valued
field X using string delimiter Y

mvjoin(address,

";")

now() Current time as Unix timestamp now()

\

null() NULL value. This function takes no
arguments.

null()

nullif(X,Y) X if the two arguments, fields X and Y, are
different. Otherwise returns NULL.

nullif(fieldX,

fieldY)

random() Pseudo-random number ranging from 0 to
2147483647

random()

relative_time

(X,Y)

Unix timestamp value of relative time
specifier Y applied to Unix timestamp X

relative_time(n

ow(),"-1d@d")

replace(X,Y,Z) A string formed by substituting string Z for
every occurrence of regex string Y in string X

The example swaps the month and day
numbers of a date.

replace(date,

"^(\d{1,2})/(\d

{1,2})/",

"\2/\1/")

round(X,Y) X rounded to the number of decimal places
specified by Y, or to an integer for omitted Y

round(3.5)

rtrim(X,Y) X with the characters in (optional) Y trimmed
from the right side. Trim spaces and tabs for
unspecified Y

rtrim("

ZZZZabcZZ ", "

Z")

split(X,"Y") X as a multi-valued field, split by delimiter Y split(address,

";")

sqrt(X) Square root of X sqrt(9) # 3

strftime(X,Y) Unix timestamp value X rendered using the
format specified by Y

strftime(time,

"%H:%M")

strptime(X,Y) Value of Unix timestamp X as a string parsed
from format Y

strptime(timeSt

r, "%H:%M")

substr(X,Y,Z) Substring of X from start position (1-based) Y
for (optional) Z characters

substr("string"

, 1, 3) #str

time() Current time to the microsecond. time()

tonumber(X,Y) Converts input string X to a number of
numerical base Y (optional, defaults to 10)

tonumber("FF",1

6)

tostring(X,Y) Field value of X as a string.

If X is a number, it reformats it as a string. If
X is a Boolean value, it reformats to "True" or
"False" strings.

If X is a number, the optional second
argument Y is one of:

- "hex": convert X to hexadecimal,

- "commas": formats X with commas

and two decimal places, or
- "duration": converts seconds X to

readable time format HH:MM:SS.

This example
returns
bar=00:08:20:

| makeresults |

eval bar =

tostring(500,

"duration")

typeof(X) String representation of the field type This example
returns
"NumberBool":

| makeresults |

eval

n=typeof(12) +

typeof(1==2)

\

urldecode(X) URL X, decoded. urldecode("http

%3A%2F%2Fwww.si

te.com%2Fview%3

Fr%3Dabout")

validate(X,Y,…

)

For pairs of Boolean expressions X and
strings Y, returns the string Y corresponding
to the first expression X which evaluates to
False, and defaults to NULL if all X are True.

validate(isint(

N), "Not an

integer", N>0,

"Not positive")

Statistical and Graphing Functions

Common statistical functions used with the chart, stats, and timechart commands.

Field names can contain wildcards (*), so avg(*delay) might calculate the average of the

delay and *delay fields.

Function Return value
Usage: stats foo=… / chart bar=… / timechart t=…

avg(X) average of the values of field X

count(X) number of occurrences of the field X. To indicate a specific field value
to match, format X as eval(field="desired_value").

dc(X) count of distinct values of the field X

earliest(X)

latest(X)

chronologically earliest/latest seen value of X

max(X) maximum value of the field X. For non-numeric values of X, compute
the max using alphabetical ordering.

median(X) middle-most value of the field X

min(X) minimum value of the field X. For non-numeric values of X, compute
the min using alphabetical ordering.

mode(X) most frequent value of the field X

percN(Y) N-th percentile value of the field Y. N is a non-negative integer < 100.
Example: perc50(total) = 50th percentile value of the field

total.

range(X) difference between the max and min values of the field X

stdev(X) sample standard deviation of the field X

stdevp(X) population standard deviation of the field X

sum(X) sum of the values of the field X

sumsq(X) sum of the squares of the values of the field X

values(X) list of all distinct values of the field X as a multi-value entry. The order
of the values is alphabetical

var(X) sample variance of the field X

Index Statistics

Compute index-related statistics.

\

From this point onward, splunk refers to the partial or full path of the Splunk app on your

device $SPLUNK_HOME/bin/splunk, such as /Applications/Splunk/bin/splunk

on macOS, or, if you have performed cd and entered /Applications/Splunk/bin/,

simply ./splunk.

Function Description

| eventcount summarize=false index=*

| dedup index | fields index

List all indexes on your Splunk
instance. On the command line, use
this instead:

splunk list index

| eventcount summarize=false

report_size=true index=* | eval

size_MB =

round(size_bytes/1024/1024,2)

Show the number of events in your
indexes and their sizes in MB and
bytes

| REST /services/data/indexes | table

title currentDBSizeMB

List the titles and current database
sizes in MB of the indexes on your
Indexers

index=_internal source=*metrics.log

group=per_index_thruput series=* |

eval MB = round(kb/1024,2) |

timechart sum(MB) as MB by series

Query write amount in MB per index
from metrics.log

index=_internal metrics kb series!=_*

"group=per_host_thruput" | timechart

fixedrange=t span=1d sum(kb) by

series

Query write amount in KB per day
per Indexer by each host

index=_internal metrics kb series!=_*

"group=per_index_thruput" | timechart

fixedrange=t span=1d sum(kb) by

series

Query write amount in KB per day
per Indexer by each index

Reload apps

To reload Splunk, enter the following in the address bar or command line interface.

Address bar Description

http://localhost:8000/debug/

refresh

Reload Splunk. Replace localhost:8000 with

the base URL of your Splunk Web server if you’re
not running it on your local machine.

Command line Description

splunk _internal call

/data/inputs/monitor/_reload

Reload Splunk file input configuration

splunk stop

splunk enable webserver

splunk start

These three lines in succession restart Splunk.

Debug Traces

You can enable traces listed in $SPLUNK_HOME/var/log/splunk/splunkd.log.

\

To change trace topics permanently, go to $SPLUNK_HOME/bin/splunk/etc/log.cfg

and change the trace level, for example, from INFO to DEBUG:

category.TcpInputProc=DEBUG

Then

08-10-2022 05:20:18.653 -0400 INFO ServerConfig [0

MainThread] - Will generate GUID, as none found on this

server.

becomes

08-10-2022 05:20:18.653 -0400 DEBUG ServerConfig [0

MainThread] - Will generate GUID, as none found on this

server.

To change the trace settings only for the current instance of Splunk, go to Settings > Server

Settings > Server Logging:

Filter the log channels as above.

Select your new log trace topic and click Save. This persists until you stop the server.

Configuration

The following changes Splunk settings. Where necessary, append -auth user:pass to

the end of your command to authenticate with your Splunk web server credentials.

\

Command line Description

Troubleshooting

splunk btool inputs list List Splunk configurations
splunk btool check Check Splunk configuration syntax

Input management
splunk _internal call

/data/inputs/tcp/raw

List TCP inputs

splunk _internal call

/data/inputs/tcp/raw -

get:search sourcetype=foo

Restrict listing of TCP inputs to only those
with a source type of foo

License details of your current Splunk instance
splunk list licenses Show your current license

User management
splunk _internal call

/authentication/providers/serv

ices/_reload

Reload authentication configurations for
Splunk 6.x

splunk _internal call

/services/authentication/users

-get:search admin

Search for all users who are admins

splunk _internal call

/services/authentication/users

-get:search indexes_edit

See which users could edit indexes

splunk _internal call

/services/authentication/users

/helpdesk -method DELETE

Use the remove link in the returned XML
output to delete the user helpdesk

Capacity Planning

Importing large volumes of data takes much time. If you’re using Splunk in-house, the

software installation of Splunk Enterprise alone requires ~2GB of disk space. You can find

an excellent online calculator at splunk-sizing.appspot.com.

The essential factors to consider are:

● Input data

○ Specify the amount of data concerned. The more data you send to Splunk

Enterprise, the more time Splunk needs to index it into results that you can

search, report and generate alerts on.

● Data Retention

○ Specify how long you want to keep the data. You can only keep your imported

data for a maximum length of 90 days or approximately three months.

○ Hot/Warm: short-term, in days.

○ Cold: mid-term, in weeks.

○ Archived (Frozen): long-term, in months.

● Architecture

○ Specify the number of nodes required. The more data to ingest, the greater

the number of nodes required. Adding more nodes will improve indexing

throughput and search performance.

https://docs.splunk.com/Documentation/Splunk/9.0.0/Troubleshooting/Usebtooltotroubleshootconfigurations
https://www.splunk.com/en_us/blog/tips-and-tricks/poke-at-our-api.html
https://splunk-sizing.appspot.com/

\

● Storage Required

○ Specify how much space you need for hot/warm, cold and archived data

storage.

● Storage Configuration

○ Specify the location of the storage configuration. If possible, spread each type

of data across separate volumes to improve performance: hot/warm data on

the fastest disk, cold data on a slower disk, and archived data on the slowest.

We hope this Splunk cheat sheet makes Splunk a more enjoyable experience for you. To

download a PDF version of this Splunk cheat sheet, click here.

