Sgimap Cheat Sheet

SQLMAP

CHEAT SHEET

STATIONY

THE CYBER SECURITY COMPANY

System Requirements for Sqimap

sqglmap runs on Python versions 2.6, 2.7, and 3 on Windows, macOS, and Linux.

From this point onward, we will sSimply use sglmap to represent any of these choices:
e python sglmap.py

python3 sglmap.py

py -2 sqlmap.py

py -3 sqglmap.py

(Kali Linux) sglmap

Check that you have the correct Python versions installed in your command line console or
terminal using sgqlmap --version

Install Sqlmap

Download sqlmap below:
e tarball here;
e zipball here.
e cloning the Git repository:
git clone --depth 1
https://github.com/sglmapproject/sqglmap.git sglmap-dev
This is also the preferred method to upgrade sqlmap on Kali Linux.
The Git wiki has information for advanced sglmap users.

Checking for SQLi Vulnerabilities

How to use sglmap in the command line:

sSTATIONY{

THE CYBER SECURITY COMPANY

https://www.python.org/download/
https://www.kali.org/get-kali/
https://github.com/sqlmapproject/sqlmap/tarball/master
https://github.com/sqlmapproject/sqlmap/zipball/master
https://github.com/sqlmapproject/sqlmap
https://www.kali.org/get-kali/
https://github.com/sqlmapproject/sqlmap/wiki/Download-and-update

sglmap [mandatory arguments and values required] [options and
values where applicable]

Overview of SQLi Attacks

Categories of SQLi attacks include:
e In-band
e Out-of-band
e Inferential (or Blind)
e Compound

In-Band (or Classic) SQLi Attacks

In in-band attacks, the attacker can launch the attack and view results through the same
channel (band), such as via a console shell or web application. The four most popular in-
band injection techniques are error-based, union-based, stacked queries, and inline
gueries. (sqlmap option: --technique)

Error-based injections

Error messages displayed in the console or application leak information about the database
configurations, structure, and data.

Union-based injections

Using UNION and associated keywords, the attacker combines the results from a legitimate
guery with those from an attack to extract data, such as by matching user data with location
history.

Stacked queries (piggybacking)

The attacker sends multiple SQL statements joined by a semicolon in the same call to the
database server to change the data within or manipulate the server.

Inline queries

Embedding partial SQL statements on the server-side backend makes the server vulnerable
to SQLi via client-side input.

Out-of-Band SQLi Attacks

Out-of-band attacks obtain data using a channel (band) other than the one making the
request. Examples include receiving an email containing query results and sending results to
a different web server using a separate HTTP connection.

Inferential (or Blind) SQLIi Attacks

These involve changing the database behavior to reconstruct information.

sSTATIONY{

THE CYBER SECURITY COMPANY

Boolean injections

This inferential attack involves Boolean expressions, such as tautologies. If you are visiting
an e-commerce website, you might obtain a product page via the route /product/279, which
translates to this query string in the backend:

SELECT * FROM products WHERE id='279';

But append a tautological statement to the route to get /product/279'%200r%201=1:
SELECT * FROM products WHERE id='279' OR 1=1;

Since 1=1 must evaluate to TRUE, you can see all products regardless of the limitations the
vendor has placed on them, such as unannounced or out-of-stock inventory.

Time delay injections (time-based attacks)

This inferential attack leaves negligible traces of penetration on the database logs during the
exploration of an unknown database. Such attacks depend on the database pausing for a
fixed time before responding, and the injected time delay command differs across SQL
languages.

If the database is not vulnerable to a time-based attack, the results will load quickly despite
the time delay specified.

Compound SQLi Attacks

Compound SQLi attacks refer to SQLi attacks plus other cyberattacks, such as unauthorized
access, distributed denial of service (DDoS), domain name server (DNS) hijacking, and
cross-site scripting (XSS). The details of the other attacks are beyond the scope of this cheat
sheet.

Sqimap Options
Mandatory Arguments

At least one of the following is necessary for the sqlmap command to run:

-h Basic help

-hh Advanced help

—--version Show sglmap version nhumber

-v VERBOSE Set verbosity level where VERBOSE is an integer between
0 and 6 inclusive (default: 1)

--wizard Simple wizard interface for beginner users

--shell Prompt for an interactive sqlmap shell; inside the shell,
omit sqglmap and enter options and arguments directly

--update Update sgimap to the latest version

—-purge Safely remove all content from sglmap data directory

sSTATIONY{

THE CYBER SECURITY COMPANY

https://www.sqlinjection.net/time-based/

--list-tampers
-—-dependencies

-u URL
——url=URL

~g GOOGLEDORK

—-d DATABASE STRING

-m /path/to/BULKFILE

-1 /path/to/LOGFILE

-r
/path/to/REQUESTFILE

-c CONFIGFILE.INI

General Options

Set general working parameters.

sSTATIONY{

THE CYBER SECURITY COMPANY

Display list of available tamper scripts

Check for missing (optional) sglmap dependencies
Description

Specify target URL, preferably containing vulnerable query
parameters

Example:

-u "http://www.site.com/vuln.php?id=1"
Process Google dork results as target URLS: you input as
Google dorking queries, and you obtain URL results on
which you run sglmap.

GOOGLEDORK examples (\ to escape double quote "):
e "inurl:\".php?id=1\""
® 'intext:csrg filetype:"pdf"'

Overusing this command leads to the following warning:
[CRITICAL] Google has detected 'unusual'
traffic from used IP address disabling
further searches

Specify connection string for direct database connection

DATABASE STRING format:

e "rdbms://user:password@dbms ip:dbms por
t/database name" ; -

e "rdbms://database filepath"

DATABASE STRING exam pleS:
e "sglite:///home/user/testdb"
® 'mysgl://admin:999@127.0.0.1:3306/dbl"

Scan multiple targets listed in textual file BULKFILE

Sample BULKFILE contents:
www.targetl.com/vulnl.php?g=foobar
wWww.target2.com/vuln2.asp?id=1
www.target3.com/vuln3/id/1*

Parse target(s) from Burp or WebScarab proxy log file
LOGFILE

Load HTTP request from textual file REQUESTFILE

Sample REQUESTFILE contents:
POST /vuln.php HTTP/1.1
Host: www.target.com
User-Agent: Mozilla/4.0

id=1
Load options from a configuration file (extension . INT),
useful for complex attacks

--batch
——answers

——flush-session
——Cran=CRAWL_DEPTH

——crawl-
exclude=CRAWL EXCLUDE

—-—csv-del=CSVDEL
—-—charset=CHARSET
——dump—format=DUMP_FORMAT

—--—encoding=ENCODING
—-—eta

-—-flush-session
——output—dir=OUTPUT_DIR
--parse-errors

——preprocess=SCRIPT
——postprocess=SCRIPT
--repair

—-s5ave=SAVECONFIG
——scope=SCOPE
--skip-heuristics
--skip-waf
--web-root=WEBROOT

Request Options

Never ask for user input, use the default behavior
Set predefined answers: parameters are substring(s)
of question prompt(s); join multiple answers with a
comma. You may use this with --batch.

Usage: -—answers="quit=N, follow=N"

Flush session files for current target

Crawl (collect links of) the website starting from the
target URL

Regular expression to exclude pages from being
crawled (e.g. -—crawl-exclude="1logout" to skip
all pages containing the keyword “logout”)

Delimiting character used in CSV output (default ", ")
Blind SQLi charset (e.g. "0123456789%abcdef")
Format of dumped data (CSV (default), HTML or
SQLITE)

Character encoding used for data retrieval (e.g. GBK)
Display for each output the estimated time of arrival
Flush session files for current target

Custom output directory path

Parse and display DBMS error messages from
responses

Use given script(s) for preprocessing (request)

Use given script(s) for postprocessing (response)
Redump entries having unknown character marker
(denoted by “?” character)

Save options to a configuration INI file

Regular expression for filtering targets

Skip heuristic detection of vulnerabilities

Skip heuristic detection of WAF/IPS protection

Web server document root directory (e.g.
"/var/www'")

Specify how to connect to the target URL.

-—data=DATA
—-—cookie=COOKIE

—--random-agent

——proxy=PROXY
=={LOE
——check-tor

sSTATIONY{

THE CYBER SECURITY COMPANY

Data string to be sent through POST (e.g. "id=1")
HTTP Cookie header value (e.g.
"PHPSESSID=77uT7KkibWPPEkSPjBd9GJIjPLGT;
security=low")

Use randomly selected HTTP User-Agent header
value

Use a proxy to connect to the target URL

Use Tor anonymity network

Check to see if Tor is used properly

Optimization Options

Optimize the performance of sqlmap.

-0 Turn on all optimization switches

-—-predict-output
-—-keep-alive
--null-connection

--threads=THREADS

Injection Options

Predict common queries output

Use persistent HTTP(s) connections

Retrieve page length without actual HTTP response
body

Maximum number of concurrent HTTP(s) requests
(default 1)

Specify the parameters to test against, custom injection payloads, and optional tampering

scripts.

-p TESTPARAMETER
--skip=SKIP
--skip-static

--param-exclude=PARAM EXCLUDE

—--param-filter=PARAM FILTER

—-—dbms=DBMS
—-—dbms-cred=DBMS CREDS

--0s=08S

--invalid-bignum
--invalid-logical

-—-invalid-string
——no-cast
—--no-escape
—-—-prefix=PREFIX
-—-suffix=SUFFIX
—-—tamper=TAMPER

Detection Options

Testable parameter(s) (e.g. -p
"id,user-agent")

Skip testing for given parameter(s) (e.g. ——
skip="referer")

Skip testing parameters that do not appear
to be dynamic

Regular expression to exclude parameters
PARAM EXCLUDE from testing (e.g. exclude
a session parameter "ses"

Select testable parameter(s)

PARAM FILTER by place (e.g. "POST")
Force back-end DBMS to use the given
DBMS authentication credentials

DBMS CREDS of the format
"usez:password"

Force back-end DBMS operating system to
the value of 0s

Use big numbers for invalidating values
Use logical operations for invalidating
values

Use random strings for invalidating values
Turn off payload casting mechanism

Turn off string escaping mechanism
Injection payload prefix string PREFIX
Injection payload suffix string SUFFIX

Use given script(s) TAMPER for tampering
injection data

Customize the detection phase of the SQL attack scan.

sSTATIONY{

THE CYBER SECURITY COMPANY

-—level=LEVEL
—-—-risk=RISK

-—-string=STRING
-—not-string=NOT STRING
—--regexp=REGEXP
-—code=CODE

——smart

-—-text-only

-—-titles

Techniques Options

Level of tests to perform (LEVEL takes integers 1-5,
default 1)

Risk of tests to perform (RISK takes integers 1-3,
default 1)

String to match when query returns True

String to match when query returns False

Regular expression to match when query returns True
HTTP code to match when query returns True
Perform thorough tests only if positive heuristic(s)
Compare pages based only on the textual content
Compare pages based only on their titles

Tweak testing of specific SQLi techniques.

-—technique=TECHNIQUE

——time-sec=TIMESEC
——-union-cols=UCOLS
——union—-char=UCHAR

——union-from=UFROM
—-—dns-domain=DNSDOMAIN
—-—-second-url=SECONDURL

—-second-reg=SECONDREQ

Fingerprint Option

SQLi techniques to use (default "BEUSTQ" explained
below)
B: Boolean-based blind
E: Error-based
U: Union query-based
S: Stacked queries
T: Time-based blind

e O: Inline queries
Seconds to delay the DBMS response (default 5)
Range of columns to test for UNION query SQLi
Character to use to guess the number of columns by
brute force
Table to use in FROM part of UNION query SQLI
Domain name used for DNS exfiltration attack
Resulting page URL searched for second-order
response
Load second-order HTTP request from file

Assess a database before attacking it.

-f, --fingerprint

Perform an extensive DBMS version fingerprint

Running a SQLi Attack Scan with Sqlmap

Three basic steps underlie a SQLi attack scan:

sSTATIONY{

THE CYBER SECURITY COMPANY

1. Conduct reconnaissance on a database using mandatory target arguments and
fingerprinting.
2. Discover potential vulnerabilities by enumerating the database contents.
3. Run tests of different SOLI attacks to determine the extent of these vulnerabilities.
Repeat steps 2-3 to your satisfaction.

Get a List of Databases on Your System and Their Tables

Use enumeration options to scan SQL databases. To get a list of databases on your system,
use —-dbs. For the tables and their schema, use --tables, -—schema, and -—columns.

Below is an example of exploiting a vulnerability in the id parameter in a given cookie
session to return the database tables (--tables) using default answers to prompts (--
batch):

sgqlmap -u "http://sometestdb.to/view?id=123&Submit=Submit#" --
cookie="PHPSESSID=e3£9231953973aced4acb63cfde2ccc08;
security=low" --tables --batch

To narrow down the exploit to the users column, use the —--columns option followed by -T
and the desired table name:

sgqlmap -u "http://sometestdb.to/view?id=123&Submit=Submit#" --
cookie="PHPSESSID=e3£9231953973aced4acb63cfde2ccc08;
security=low" --columns -T users --batch

Enumeration Options

These options can be used to enumerate the configuration information, structure and data
contained in the tables of the target database management system.

-a, --all Retrieve everything

-b, —--banner Retrieve DBMS banner

-—current-user Retrieve DBMS current user

-—current-db Retrieve DBMS current database

--dbs Enumerate DBMS databases

-—exclude-sysdbs Exclude DBMS system databases when enumerating
tables

--users Enumerate DBMS users

--passwords Enumerate DBMS users password hashes

-—tables Enumerate DBMS database tables

-—columns Enumerate DBMS database table columns

-—-schema Enumerate DBMS schema

-—count Retrieve number of entries for table(s)

—-—dump Dump (output) DBMS database table entries

——dump-all Dump all DBMS databases tables entries

sSTATIONY{

THE CYBER SECURITY COMPANY

-D DB DBMS database to enumerate

-T TBL DBMS database table(s) to enumerate

-C COL DBMS database table column(s) to enumerate
—-X EXCLUDE DBMS database identifier(s) to not enumerate
-U USER DBMS user to enumerate

Brute Force Options

Guess whether the database contains common names for tables, columns, and files.

—-—common-tables Check existence of common tables
——common-columns Check existence of common columns
——common-files Check existence of common files

Password Cracking with Sqimap

Straightforward Method

This requires read permissions on the target database. In this case, you could enumerate
the password hashes for each user with the --passwords option. sglmap will first
enumerate the users, then attempt to crack the password hashes.

Indirect Method

If your target database is sufficiently vulnerable, you can look for a table containing user data
(e.g., users) because passwords likely reside there.

Once sglmap discovers a column of passwords, it will prompt you for permission to crack the
passwords, followed by a prompt on whether or not to crack them via a dictionary-based
attack. If the passwords are sufficiently insecure, a “Y” to both prompts will yield meaningful
output passwords.

Sqlmap's Source Code Structure and How to Navigate It

View the source code of sqimap here on GitHub. Click here for a high-resolution version of
the diagram.

sSTATIONY{

THE CYBER SECURITY COMPANY

https://github.com/sqlmapproject/sqlmap

TTTTT g

T
TIT

=3
=
==
=

1

[TTITIT
0
0

ICMP shell

Important and Useful Sqlmap Directories

You may customize your sqlmap experience by adding or editing files in the following
directories. GitHub links refer to directories found in the sglmap source code.

/sqglmap.conf

/data/xml/payloads

/data/txt

/tamper
/output/

/history/

Default values for all options which require defaults to
function. The value(s) stated in terminal-issued commands
takes precedence over the value(s) in this .conf file.

SQLi payloads, deployed according to the user’s values of -
-level and --risk

Text strings used for guessing column names and
passwords (dictionary-based attacks)

Tamper scripts

Results from sglmap commands returning database values
such as —-dumnp.

If you use Kali Linux, this directory is at
/home/kali/.local/share/sglmap/output/
Otherwise, the sglmap terminal output will specify this
location in an [INFO] message.

History of commands issued in a sglmap shell (--shel1l).

If you use Kali Linux, this directory is at
/home/kali/.local/share/sglmap/history.

Test --levels and Their Impact on Your Commands

Check your database against particular SQLi attacks by setting test --1evel values to
dictate the volume of tests to perform and the degree of feedback from sglmap.

1 (default) A limited number of tests/requests: GET and POST parameters will
be tested by default
2 Test cookies (HTTP cookie header values)

sSTATIONY{

THE CYBER SECURITY COMPANY

https://github.com/sqlmapproject/sqlmap/blob/master/sqlmap.conf
https://github.com/sqlmapproject/sqlmap/tree/master/data/xml/payloads
https://github.com/sqlmapproject/sqlmap/tree/master/data/txt
https://github.com/sqlmapproject/sqlmap/tree/master/tamper

3 Test cookies plus HTTP User-Agent/Referer headers’ values

As above, plus null values in parameters and other bugs

5 An extensive list of tests with an input file for payloads and
boundaries

1Ny

sglmap SQLi payloads are usually harmless, but if you want to test your database to
breaking point, --risk is the option to use:

--risk values Description

1 (default) Data remain unchanged and database remains operable

2 Include heavy query time-based SQLi attacks, which may slow
down or take down the database

3 As above, plus OR-based SQLi tests, the payload of which may

update all entries of a table and cause havoc in production
environments.

Verbosity Levels

These integer levels (0-6) are for troubleshooting and to see what sglmap is doing under the
hood.

Verbosity level

0 Show only Python tracebacks, error, and critical messages
1 (default) Show also information and warning messages

2 Show also debug messages

3 Show also payloads injected

4 Show also HTTP requests

3 Show also HTTP responses' headers

6 Show also HTTP responses' page content

Tamper Scripts and Their Actions

Tamper scripts are for bypassing security controls, such as Web Application Firewalls
(WAFs) and Intrusion Prevention Systems. There are at least 60 scripts by default, but you
can add custom ones.

Useful tamper script commands:

--list-tampers List all tamper scripts in the sgimap directory

-—tamper=TAMPERS Invoke tamper script(s) TAMPERS of your choice

Examples: --

tamper="random, appendnullbyte, between, baseb4enco
de"

--tamper="/path/to/custom/tamper script.py"

sSTATIONY{

THE CYBER SECURITY COMPANY

https://www.websec.ca/publication/Blog/Bypassing_WAFs_with_SQLMap
https://www.websec.ca/publication/Blog/Bypassing_WAFs_with_SQLMap
https://www.forcepoint.com/cyber-edu/intrusion-prevention-system-ips

Default tamper script actions fall into four categories:

pt(s) as of sqlmap version 1.6.8.1#dev

Repmcement Oeunion, apostrophemask, apostrophenullencode,
between, bluecoat, commalesslimit, commalessmid,
concat2concatws, dunion, equaltolike, equaltorlike,
greatest, hex2char, ifnull2casewhenisnull,
ifnull2ifisnull, least, lowercase, misunion,
ord2ascii, plus2concat, plus2fnconcat, randomcase,
sleep2getlock, space2comment, space2dash, spaceZhash,
spaceZmorecomment, spaceZ2morehash, spaceZ2mssglblank,
spaceZ2mssglhash, spaceZmysqglblank, spaceZ2mysqgldash,
space2plus, spacel2randomblank, substring2leftright,
symboliclogical, unionalltounion, unmagicquotes,
uppercase

Addition halfversionedmorekeywords, informationschemacomment,
multiplespaces, percentage, randomcomments,
appendnullbyte, sp password, varnish, xforwardedfor

Obfuscation basebdencode, binary, chardoubleencode, charencode,
charunicodeencode, charunicodeescape,
commentbeforeparentheses, escapequotes,
htmlencode, modsecurityversioned,
modsecurityzeroversioned, overlongutf8,
overlongutf8more, schemasplit, versionedkeywords,
versionedmorekeywords

Bypass luanginx (UA-Nginx WAFs Bypass (e.g. Cloudflare))

We hope this sqimap cheat sheet makes sglmap a more enjoyable experience for you. To
download a PDF version of this sgimap cheat sheet, click here.

sSTATIONY{

THE CYBER SECURITY COMPANY

