
\

Permissions

The following commands display file/directory permissions:

Command Description
ls -l foo.sh Check permissions of file foo.sh

ls -ld bar Check permissions of directory bar

Permissions, scope and file details upon executing ls -l or ls -ld

Permissions in symbolic notation

Linux File Permissions

Cheat Sheet

\

The permissions on files and directories span four scopes:

Scope Symbol Description

User u The owner of the file or directory

Group g The group of users to who can access the file or directory

Other o Other users (world)

All a All users

File Permissions

Permission
type

Symbol If a file has this
permission, you can:

If a directory has this
permission, you can:

Read r Open and view file
contents (cat, head,

tail)

Read directory contents (ls, du)

Write w Edit, delete or rename file
(vi)

Edit, delete or rename directory
and files within it; create files within
it (touch)

Execute x Execute the file Enter the directory (cd); without x,

the directory’s r and w permissions

are useless

None - Do nothing Do nothing

Permission-Related Commands

Command Description
chmod permission foo Change the permissions of a file or directory foo

according to a permission in symbolic or octal

notation format. Examples:
chmod +x foo Grant execute permissions to all users to foo

using symbolic notation.
chmod 777 foo Grant read, write and execute permissions to all

users to foo using octal notation.

chown user2 foo Change the owner of foo to user2.

chgrp group2 foo Change the group to which foo belongs to group2.

umask Get a four-digit subtrahend.

Recall in subtraction: minuend – subtrahend =
difference

If the minuend is 777, the difference is your default

directory permissions; if it’s 666, the difference is

your default file permissions.
su / sudo / sudo -i Invoke superuser privileges.
id Find your user id and group id.
groups Find all groups to which you belong.

\

If you run a command beyond the permissions granted, you get errors such as “Permission

denied” or “Operation not permitted”.

Changing Permissions

There are two methods to represent permissions on the command line. The first argument of

the chmod command admits both representations.

Method Format of permission Examples Non-chmod application

Symbolic
notation

A short text string
consisting of one character
of [u/g/o/a], one of the

assignment symbols [+/-

/=] and at least one of

[r/w/x]. If you omit

u/g/o/a, the default is a.

u+r

g-wx

o=rx

+x (i.e., a+x)

ls -l and ls -ld

command outputs, e.g. -
rwxrw-r--x

Here, - denotes the

absence, not the removal,
of a permission.

Octal
notation

three-digit octal number
ranging from 000 to 777

774

640

Computing default
permissions with umask

Symbolic Notation

This notation is used in the ls -l and ls -ld command outputs, and it uses a

combination of u/g/o/a (denoting the scope), +/-/=, and r/w/x to change permissions.

If you omit u/g/o/a, the default is a.

The notation +/-/= refers to granting/removing/setting various permissions.

Here are some examples of chmod usage with symbolic notation. You may change more

than one permission at a time, joining symbolic notations with a comma (,) as shown in the

fourth example below.

Command in symbolic
notation

Change in user
(u) permissions

Change in group
(g) permissions

Change in world
(o) permissions

chmod +x foo ✓ Execute ✓ Execute ✓ Execute
chmod a=x foo 𐄂 Read

𐄂 Write

✓ Execute

𐄂 Read

𐄂 Write

✓ Execute

𐄂 Read

𐄂 Write

✓ Execute
chmod u-w foo 𐄂 Write (No change) (No change)
chmod u+wx,g-

x,o=rx foo
✓ Write

✓ Execute

𐄂 Execute ✓ Read

𐄂 Write

✓ Execute

\

Octal Notation

This notation is a three-digit number, in which each digit represents permissions as the sum

of four addends 4, 2, and 1 corresponding to the read (r), write (w) and execute (x)

permissions respectively.

● The first digit applies to the user (owner) (u).

● The second digit applies to the group (g).

● The third digit applies to the world (other users) (o).

Octal digit Permission(s) granted Symbolic
0 None [u/g/o]-rwx

1 Execute permission only [u/g/o]=x

2 Write permission only [u/g/o]=w

3 Write and execute permissions only: 2 + 1 = 3 [u/g/o]=wx

4 Read permission only [u/g/o]=r

5 Read and execute permissions only: 4 + 1 = 5 [u/g/o]=rx

6 Read and write permissions only: 4 + 2 = 6 [u/g/o]=rw

7 All permissions: 4 + 2 + 1 = 7 [u/g/o]=rwx

Here are some examples of chmod usage with octal notation:

Command in octal
notation

Change in user
(u) permissions

Change in group
(g) permissions

Change in world
(o) permissions

chmod 777 foo ✓ Read

✓ Write

✓ Execute

✓ Read

✓ Write

✓ Execute

✓ Read

✓ Write

✓ Execute
chmod 501 foo ✓ Read

𐄂 Write

✓ Execute

𐄂 Read

𐄂 Write

𐄂 Execute

𐄂 Read

𐄂 Write

✓ Execute
chmod 365 foo 𐄂 Read

✓ Write

✓ Execute

✓ Read

✓ Write

𐄂 Execute

✓ Read

𐄂 Write

✓ Execute
chmod 177 foo 𐄂 Read

𐄂 Write

✓ Execute

✓ Read

✓ Write

✓ Execute

✓ Read

✓ Write

✓ Execute

Conversion Between Symbolic and Octal Notations

To visualize octal notation, let ↔ map symbolic notation to binary numbers (0 = permission

denied, 1 = permission granted), and let ⇔ convert between the binary and octal numeric

system. You have:

● r ↔ 1002 ⇔ 48,

● w ↔ 0102 ⇔ 28, and

● x ↔ 0012 ⇔ 18.

\

Therefore, each combination of r, w, and x corresponds to the unique sum of their numerical

representations, such as full rwx permissions ↔ 111 111 1112 ⇔ 7778, as follows:

Symbolic notation (ls -l) Binary representation Octal notation

rwxr-xr-x 111 101 101 755

rw-r--r-- 110 100 100 644

rwx------ 111 000 000 700

r-xr-xr-x 101 101 101 555

Default Permissions

Apart from being an alternative to symbolic notation, octal notation has a special use case

with the umask command.

To check what permissions you have as the current user, use the umask command to get a

four-digit number which, if subtracted from 0777, gives your default permissions for creating

a directory and, if subtracted from 0666, gives your default permissions for creating a file.

Usage:

Command Description

umask Find your default user and group permissions when you create a new
file or directory

Examples:

umask output Default directory permissions Default file permissions

0002 Octal: 777 – 2 = 775

Symbolic: rwxrwxr-x

Octal: 666 – 2 = 664

Symbolic: rw-rw-r--

0022 Octal: 777 – 22 = 755

Symbolic: rwxr-xr-x

Octal: 666 – 22 = 644

Symbolic: rw-r--r--

0314 Octal: 777 – 314 = 463

Symbolic: r--rw–wx

Octal: 666 – 314 = 352

Symbolic: -wxr-x-w-

Changing Ownership

Before changing the ownership of any file or directory, you need to know how your computer

identifies users and groups. Two useful commands are id and groups.

Usage:

Command Description
id Find your user id (uid) and your group id (gid)

groups Find the group(s) your user belongs to

Example:

id output Description

uid=501(teacher) gid=20(staff)

groups=20(staff),12(everyone),6

1(localaccounts)

Your user id (uid) is 501.

Your group id (gid) is 20.

\

Your user belongs to three groups: staff,

everyone and localaccounts.

groups output Description

staff everyone localaccounts Your user belongs to three groups: staff,

everyone and localaccounts.

Superuser

Most Linux distributions contain a program which lets you access the terminal as the

superuser (or root user). This program helps experienced users perform system

administration tasks.

The two ways to invoke this program are the commands su (short for substitute user) to

open up a dedicated root shell and sudo to execute commands appended to it inline. In both

cases, you will need to enter the superuser’s password to proceed with the task you intend

to perform.

Modern distributions don’t set the superuser password, so in that situation, use the sudo -i

command to enter the root shell.

The shell symbol changes from $ to # in the root shell. It is a reminder that with great power

comes great responsibility. To quit the root shell, use the exit command.

Command (includes
shell symbol)

Description of command Output prompt and (new)
shell symbol

$ su Invoke superuser shell Password:

$ sudo some_command Invoke superuser privilege
in running some_command

Password:

$

$ sudo -i Invoke superuser shell if
su is disabled

Password:

Use these superuser commands with care.

Changing File Ownership

If you have superuser privileges, you may change the (user) owner of a file or directory by

using the chown command. If you know the uid of the new owner, you may replace user2

below with the corresponding uid as well.

Command Description
sudo chown user2 foo Transfer user ownership of foo to user2

sudo chown 102 foo Transfer user ownership of foo to the user

with uid=102

https://unix.stackexchange.com/a/291734

\

Changing Group Ownership

If you’re the owner of a file or directory, you may change the group ownership of a file or

directory by using the chgrp command.

Command Description
chgrp group2 foo Transfer the ownership of file/directory foo

to group group2

chgrp 2 foo Transfer the ownership of file/directory foo

to group with gid=2

sudo chown user2:group2 foo (Superuser privileges required) Change the
user and group ownership simultaneously
to user2 and group2 respectively

