Certified Ethical Hacker (CEH) Exam Cheat Sheet

CERTIFIED ETHICAL HACKER EXAM CHEAT SHEET

Basics

ATTACK TYPES

OS: Attacks targeting default OS settings App level: Application code attacks

Shrink Wrap: off-the-shelf scripts and code

Misconfiguration: not configured well

5 phases to a penetration

Reconnaissance Scanning & Enumeration

Gaining Access

Maintaining Access

Covering Tracks

Legal

18 U.S.C 1029 & 1030	
RFC 1918 - Private IP Standard	SOX - Corporate Finance Processes
RFC 3227 - Collecting and storing data	GLBA - Personal Finance Data
ISO 27002 - InfoSec Guideline	FERPA - Education Records
CAN-SPAM - email marketing	FISMA - Gov Networks Security Std
SPY-Act - License Enforcement	CVSS - Common Vuln Scoring System
DMCA - Intellectual Property	CVE - Common Vulns and Exposure

Regional Registry Coverage Map

Cryptography

SYMMETRIC ENCRYPTION

Only one key used to encrypt and decrypt

SYMMETRIC ALGORITHMS

DES: 56bit key (8bit parity); fixed block

3DES: 168bit key; keys \leq 3

AES: 128, 192, or 256; replaced DES

IDEA: 128bit key

Twofish: Block cipher key size ≤ 256bit

Blowfish: Rep. by AES; 64bit block

RC: incl. RC2 → RC6. 2,040key, RC6 (128bit block)

ASYMMETRIC ENCRYPTION

Public key = Encrypt, Private Key = Decrypt

ASYMMETRIC ALGORITHMS

Diffie-Hellman: key Exchange, used in SSL/IPSec ECC: Elliptical Curve. Low process power/Mobile

EI Gamal: !=Primes, log problem to encrypt/sign

RSA: 2 x Prime 4,096bit. Modern std.

HASH ALGORITHMS

MD5: 128bit hash, expres as
32bit hex
SHA1: 160bit hash,rq 4 use
in US apps
SHA2: 4 sep hash
224,256,384,512

TRUST MODELS

Web of trust: Entities sign certs for each other Single Authority: CA at top. Trust based on CA itself Hierarchical: CA at top. RA's Under to manage certs

XMKS - XML PKI System

CRYPTOGRAPHY ATTACKS

Known Plain-text: Search plaintext for repeatable sequences. Compare to t versions. Ciphertext-only: Obtain several messages with same algorithm. Analyze to reveal repeating code. Replay: Performed in MITM. Repeat exchange to fool system in setting up a comms channel.

	~~~~~~~~~~
DIGITAL	CERTIFICATE
D - 0	

I

DIGITAL CERTIFICATE	
Used to verify user identity =	Valid from/to: Certificate good
nonrepudiation	through dates
<b>Version:</b> Identifies format. Common = V1	<b>Key usage:</b> Shows for what purpose cert was made
Serial: Uniquely identify the	Subject's public key: self-
certificate	explanatory
Subject: Whoever/whatever being	Optional fields: e.g., Issuer
identified by cert	ID, Subject Alt Name
Algorithm ID: Algorithm used	
migorium id: migorium abea	
<b>Issuer:</b> Entity that verifies authenticity of certificate	

# Reconnaissance

### DEFINITION

Gathering information on targets, whereas foot-printing is mapping out at a high level. These are interchangeable in C|EH.

GOOGLE HACKING	DNS RECORD TYPES
Operator: keyword additional search items	<pre>Service (SRV): hostname &amp; port # of servers</pre>
site: Search only within domain	Start of Authority (SOA): Primary
ext: File Extension	name server
loc: Maps Location	<b>Pointer (PTR):</b> IP to Hostname; for reverse DNS
intitle: keywords in title tag of page	TOT TEVELSE DUS



allintitle: any keywords can be in title	Name Server (NS): NameServers with namespace
inurl: keywords anywhere in url	Mail Exchange (MX): E-mail
allinurl: any of the keywords	servers
can be in url	CNAME: Aliases in zone. list
incache: search Google cache only	multi services in DNS
	Address (A): IP to Hostname; for
	DNS lookup
	DNS footprinting: whois, nslookup, dig

TCP HEADER FLAGS	
------------------	--

URG: Indicates data being		
sent out of band		
ACK: Ack to, and after SYN		
<b>PSH:</b> Forces delivery without		
concern for buffering		
RST: Forces comms		
termination in both		
directions		
SYN: Initial comms.		
Parameters and sequence #'s		
FIN: ordered close to		
communications		

	λŦ.	0
U.	N	5

port 53 nslokup (UDP), Zone xfer
(TCP)

DHCP
Client - Discover-> Server
Client<-Offers Server
Client -Request-> Server
Client <ack server<="" td=""></ack>
IP is removed from pool

# **Scanning & Enumeration**

ICMP MESSAGE TYPES	
<b>0:</b> Echo Reply: Answer to type 8 Echo Request	
3: Destination Unreachable: No host/ network Codes	4: Source Quench: Congestion control message
0 — Destination network unreachable	5: Redirect: 2+ gateways for sender to use or the best route not the configured default gateway Codes
1 - Destination host unreachable	0 - redirect datagram for the network
6 - Network unknown	1 - redirect datagram for the host
7 - Host unknown	8: Echo Request: Ping message requesting echo
9 - Network administratively prohibited	11: Time Exceeded: Packet too long be routed
10 - Host administratively prohibited	
13 - Communication administratively prohibited	



# CIDR

Method of the representing IP Addresses.

IPV4 NOTATION	
/30=4	.255.252
/28=16	.255.240
/26=64	.255.192
/24=256	.255.0
/22=1024	.252.0
/20=4096	.240.0

000

. . .

TCP/IP model Protocols and services		OSI model
	) HTTP, FTTP, [	Application
Application	Telnet, NTP,	Presentation
	) DHCP, PING	Session
Transport	) TCP, UDP (	Transport
Network	) IP, ARP, ICMP, IGMP (	Network
Network	) (	Data Link
Interface	Ethernet	Physical

PORT NUMBERS	HTTP Error Codes
0 - 1023: Well-known	200 Series - OK
1024 - 49151: Registered	400 Series - Could not provide req
49152 — 65535: Dynamic	500 Series - Could not process req

IMPORTANT PORT NUMBERS			
FTP:	20/21	NetBIOS/SMB:	137-139
SSH:	22	IMAP:	143
Telnet:	23	SNMP:	161/162
SMTP:	25	LDAP:	389
WINS:	42	HTTPS:	443
TACACS:	49	CIFS:	445
DNS:	53	RADIUS:	1812
HTTP:	80 /	RDP:	3389
	8080		
Kerbers:	88	IRC:	6667
POP3:	110	Printer:	515,631,9100
Portmapper (Linux):	111	Tini:	7777
NNTP:	119	NetBus:	12345
NTP:	123	Back Orifice:	27374
RPC-DCOM:	135	Sub7:	31337



NMAPNMAP SCAN TYPESNmap is the de-facto tool for this pen-test phaseTCP: 3 way handshake on all ports.NMAP <scan options=""> <target>Open = SYN/ACK, Closed = RST/ACK-sA: ACK scan -sF: FIN scan -sS:SYN -sT: TCP scanSYN: SYN packets to ports (incomplete handshake)sI: IDLS scan -sn: PING sweep -sN: NULL -sS: Stealth Scan -sR: RPC scan -Po: No pingOpen = no response Closed =</target></scan>		
this pen-test phaseports.Dpen = SYN/ACK, Closed = RST/ACK-sA: ACK scan -sF: FIN scan-sS:SYN -sT: TCP scan-sI: IDLS scan -sn: PING sweep-sN: NULL -sS: Stealth Scan-sR: RPC scan -Po: No pingFIN: Packet with FIN flag set	NMAP	NMAP SCAN TYPES
-sS:SYN -sT: TCP scan(incomplete handshake)sI: IDLS scan -sn: PING sweepOpen = SYN/ ACK, Closed = RST/-sN: NULL -sS: Stealth ScanACK-sR: RPC scan -Po: No pingFIN: Packet with FIN flag set	this pen-test phase	ports. Open = SYN/ACK, Closed =
-SW: WINdow -SX: XMAS tree Scan -PI: ICMP ping - PS: SYN ping -PT: TCP ping -oN: Normal output -oX: XML output -A OS/Vers/Script -T<0-4>: Slow - Fast ACK: Used for Linux/Unix systems Open = NO response, Closed = RST ACK: Used for Linux/Unix systems Open = RST, Closed = no response IDLE: Spoofed IP, SYN flag, designed for stealth. Open = SYN/ACK, Closed= RST/ACK NULL: No flags set. Responses vary by OS. NULL scans are designed for Linux/ Unix machines.	-sA: ACK scan -sF: FIN scan -sS:SYN -sT: TCP scan -sI: IDLS scan -sn: PING sweep -sN: NULL -sS: Stealth Scan -sR: RPC scan -Po: No ping -sW: Window -sX: XMAS tree scan -PI: ICMP ping - PS: SYN ping -PT: TCP ping -oN: Normal output -oX: XML output -A OS/Vers/Script	<pre>(incomplete handshake). Open = SYN/ ACK, Closed = RST/ ACK FIN: Packet with FIN flag set Open = no response, Closed = RST XMAS: Multiple flags set (fin, URG, and PSH) Binary Header: 00101001 Open = no response, Closed = RST ACK: Used for Linux/Unix systems Open = RST, Closed = no response IDLE: Spoofed IP, SYN flag, designed for stealth. Open = SYN/ACK, Closed= RST/ACK NULL: No flags set. Responses vary by OS. NULL scans are designed for Linux/ Unix</pre>

SNMP	
Uses a community string for PW	
SNMPv3 encrypts the community s	strings
NETBIOS	
nbstat	
nbtstat -a COMPUTER 190	nbtstat -S 10 -display ses stats

	eve	very 10 sec	
nbtstat -A 192.168.10.12 remote table	1B	<pre>3 ==master browser for the subn</pre>	et
nbtstat -n local name table	10	: == domain controller	
npustat -n local name table	IC	domain concrotter	
nbtstat -c local name cache	1D	) == domain master browser	
nbtstat -r -purge name cache			



# **Sniffing and Evasion**

### IPV4 AND IPV6

IPv4 == unicast, multicast, and broadcast
IPv6 == unicast, multicast, and anycast.
IPv6 unicast and multicast scope includes link local, site local
and global.

MAC ADDRESS	NAT (NETWORK ADDRESS TRANSLATION)
First half = 3 bytes (24bits) = Org UID Second half = unique	Basic NAT is a one-to-one mapping where each internal IP== a unique public IP.
number	Nat overload (PAT) == port address translation. Typically used as is the cheaper option.

Concerned with the connections. Doesn't sniff ever packet, it just verifies if it's a known connection, then passes along.

#### HTTP Tunnelling

Crafting of wrapped segments through a port rarely filtered by the Firewall (e.g., 80) to carry payloads that may otherwise be blocked.

IDS EVASION TACTICS	TCPDUMP SYNTAX
Slow down OR flood the	<pre>#~tcpdump flag(s) interface</pre>
network (and sneak through in the mix) OR fragmentation	
SNORT IDS	

It has 3 modes:	Sniffer/Packet logger/ Network IDS.
<pre>Config file: /etc/snort, or c:snortetc #~alert tcp!HOME_NET any -&gt;\$HOME_NET 31337 (msg : "BACKDOOR ATTEMPT-Back- orifice.")</pre>	Any packet from any address !=home network. Using any source port, intended for an address in home network on port 31337, send msg.
Span port: port mirroring	False Negative: IDS incorrectly reports stream clean

LM HASHING	
7 spaces hashed:	
AAD3B435B51404EE	

# SAM FILE

C:Windowssystem32config



# **Attacking a System**

### C|EH RULES FOR PASSWORDS

Must not contain user's name. Min 8 chars. 3 of 4 complexity components. E.g., Special, Number, Uppercase, Lowercase

## ATTACK TYPES

Passive Online: Sniffing wire, intercept clean text password /
replay / MITM
Active Online: Password guessing.
Offline: Steal copy of password i.e., SAM file. Cracking efforts
on a separate system
Non-electronic: Social Engineering

SIDEJACKING	SESSION HIJACKING
Steal cookies exchanged between systems and use tp perform a replay-style attack.	Refers to the active attempt to steal an entire established session from a target
	1. Sniff traffic between client
AUTHENTICATION TYPES	and server
Type 1: Something you know Type 2: Something you have	<ol> <li>Monitor traffic and predict sequence</li> <li>Desynchronise session with</li> </ol>
Type 3: Something you are	client
	4. Predict session token and take over session
	5. Inject packets to the target server

KERBEROS
Kerberos makes use of symmetric and asymmetric encryption
technologies and involves:
KDC: Key Distribution Centre
AS: Authentication Service
TGS: Ticket Granting Service
TGT: Ticket Granting Ticket
Process
1. Client asks KDC (who has AS and TGS) for ticket to authenticate throughout the network. this request is in clear text.
<ol> <li>Server responds with secret key. hashed by the password copy kept on AD server (TGT).</li> </ol>
3. TGT sent back to server requesting TGS if user decrypts.
4. Server responds with ticket, and client can log on and access
network resources.



### REGISTRY

2 elements make a registry setting: a key (location pointer), and value (define the key setting). Rot level keys are as follows: HKEY_LOCAL_MACHINE_Info on Hard/software HKEY_CLASSES_ROOT - Info on file associations and Object Linking and Embedding (OLE) classes HKEY_CURRENT_USER - Profile info on current user HKEY_USERS - User config info for all active users HEKY_CURRENT-CONFIG-pointer tohardware Profiles. HEKY_LOCAL-MACHINESoftwareMicrosoftWindowsCurrentVersion RunServicesOnce RunServices Run Once Run

# **Social Engineering**

HUMAN BASED ATTACKS	COMPUTER BASED ATTACKS
Dumpster diving	Phishing - Email SCAM
Impersonation	Whaling - Targeting CEO's
Technical Support	Pharming - Evil Twin Website
Should Surfing	
Tailgating/ Piggybacking	

TYPES OF SOCIAL ENGINEERS
Insider Associates: Limited Authorized Access
Insider Affiliates: Insiders by virtue of Affiliation that spoof
the identity of the Insider
Outsider Affiliates: Non-trusted outsider that use an access point
that was left open

# **Physical Security**

3 MAJOR CATEGORIES OF PHYSICAL SECURITY MEASURES
Physical measures: Things you taste, touch, smell
Technical measures: smart cards, biometrics
Operational measures: policies and procedures

# **Web-Based Hacking**

CSRF - CROSS SITE REQUEST FORGERY

CSRF - CROSS SITE REQUEST FORGERY

Variant of Unicode or un-validated input attack



### SQL INJECTION ATTACK TYPES Union Query: Use the UNION command to return the union of target Db with a crafted Db Tautology: Term used to describe behavior of a Db when deciding if a statement is true. Blind SQL Injection: Trial and Error with no responses or prompts. Error based SQL Injection: Enumeration technique. Inject poorly constructed commands to have Db respond with table names and other information

#### BUFFER OVERFLOW

A condition that occurs when more data is written to a buffer than it has space to store and results in data corruption. Caused by insufficient bounds checking, a bug, or poor configuration in the program code. Stack: Premise is all program calls are kept in a stack and performed in order. Try to change a function pointer or variable to allow code exe Heap: Takes advantage of memory "on top of" the application (dynamically allocated). Use program to overwrite function pointers

**NOP Sled:** Takes advantage of instruction called "no-op". Sends a large # of NOP instructions into buffer. Most IDS protect from this attack.

#### Dangerous SQL functions

The following do not check size of destination buffers: gets() strcpy() stract() printf()

# **Wireless Network Hacking**

## WIRELESS SNIFFING

Compatible wireless adapter with promiscuous mode is required, but otherwise pretty much the same as sniffing wired.

802.11	SPECIFICATIONS

WEP: RC4 with 24bit vector. Kers are 40			
or 104bit			
WAP: RC4 supports longer keys; 48bit IV			
WPA/TKIP: Changes IV each frame and key			
mixing			
WPA2: AES + TKIP features; 48bit IV			
Spec	Dist	Speed	Freq
<b>Spec</b> 802.11a		<b>Speed</b> 54 Mbps	<b>Freq</b> 5GHz
-		54 Mbps	-
802.11a	30m	54 Mbps 11 Mbps	5GHz



BLUETOOTH ATTACKS

Bluesmacking: DoS against a device
Bluejacking: Sending messages to/from devices
Bluesniffing: Sniffs for Bluetooth
Bluesnarfing: actual theft of data from a device

# **Trojans and Other Attacks**

VIRUS TYPES
Boot: Moves boot sector to another location. Almost impossible to
remove.
Camo: Disguise as legit files.
Cavity: Hides in empty areas in exe.
Marco: Written in MS Office Macro Language
Multipartite: Attempts to infect files and boot sector at same
time.
Metamorphic virus: Rewrites itself when it infects a new file.
Network: Spreads via network shares.
Polymorphic virus: Constantly changing signature makes it hard to
detect.
Shell virus: Like boot sector but wrapped around application code,
and run on application start.
Stealth. Hides in files conies itself to deliver navload

Stealth: Hides in files, copies itself to deliver payload.

DOS TYPES	
SYN Attack:	Send thousands of SYN packets with a false IP address. Target will attempt SYN/ACK response. All machine resources will be engaged.
SYN Flood:	Send thousands of SYN Packets but never respond to any of the returned SYN/ACK packets. Target will run out of available connections.
ICMP Flood:	Send ICMP Echo packets with a fake source address. Target attempts to respond but reaches a limit of packets sent per second.
Application level:	Send "legitimate" traffic to a web application than it can handle.
Smurf:	Send large number of pings to the broadcast address of the subnet with source IP spoofed to target. Subnet will send ping responses to target.
Fraggle Attack:	Similar to Smurf but uses UDP.
Ping of Death:	Attacker fragments ICMP message to send to target. When the fragments are reassembled, the resultant ICMP packet is larger than max size and crashes the system



# **Linux Commands**

LINUX FILE		IDENTIFYING USERS AND PROCESSES
SYSTEM		INIT process ID 1
/	-Root	Root UID, GID 0
/var	-Variable Data /	Accounts of Services 1-999
	Log Files	All other users Above 1000
/bin	-Biniaries / User	
	Commands	
/sbin	-Sys Binaries /	PERMISSIONS
	Admin Commands	4 - Read
/root	-Home dir for root user	2 - Write
		1 - Execute
/boot	-Store kernel	User/Group/Others
/proc	-Direct access to	764 - User>RWX, Grp>RW, Other>R
-	kernel	
/dev	-Hardware storage	
	devices	
/mnt	-Mount devices	

### SNORT

```
action protocol address port -> address port
(option:value;option:value)
alert tcp 10.0.0.1 25 -> 10.0.0.2 25
(msg:"Sample Alert"; sid:1000;)
```

# **Command Line Tools**

NMAP	NMAP -ST -T5 -N -P 1-100 10.0.0.1
Netcat	nc -v -z -w 2 10.0.0.1
TCPdump	tcpdump -i eth0 -v -X ip proto 1
Snort	snort -vde -c my.rules 1
hping	hping3 -I -eth0 -c 10 -a 2.2.2.2 -t 100 10.0.0.1
iptables	iptables -A FORWARD -j ACCEPT -p tcp -dport 80

# **CEH Tools**

VULNERABILITY RESEARCH	SCANNING AND ENUMERATION	
National Vuln Db	Ping Sweep	
Eccouncil.org	Angry IP Scanner	
Exploit Database	MegaPing	
	Scanning Tools	
	SuperScan	
FOOT-PRINTING	NMap (Zenmap)	
Website Research Tools	NetScan Tools Pro	
Netcraft	Hping	
Webmaster	Netcat	
Archive	War Dialing	
DNS and Whois Tools THC-Scan		
	TeleSweep	
Nslookup		



Sam Spacde ARIN WhereisIP DNSstuff DNS-Digger Website Mirroring Wget Archive GoogleCache

#### SYSTEM HACKING TOOLS

Password Hacking Cain John the Ripper LCP THC-Hydra ElcomSoft Aircrack Rainbow Crack Brutus KerbCrack Sniffing Wireshark Ace KerbSniff Ettercap Keyloggers and Screen Capture KeyProwler Ultimate Keylogger All in one Keylogger Actual Spy Ghost Hiddern Recorder Desktop Spy USB Grabber Privilege Escalation Password Recovery Boot Disk Password Reset Password Recovery System Recovery Executing Applications PDQ Deploy RemoteExec Dameware Spyware Remote Desktop Spy Activity Monitor OSMomitor SSPro

ToneLoc WarVox Banner Grabbing Telnet ID Serve Netcraft Xprobe Vulnerability Scanning Nessus SAINT Retina Core Impact Nikto Network Mapping NetMapper LANState IPSonar Proxy, Anonymizer, and Tunneling Tor ProxySwitcher ProxyChains SoftCab HTTP Tunnel Anonymouse Enumeration SuperScan User2Sid/Sid2User LDAP Admin Xprobe Hvena SNMP Enumeration SolarWinds SNMPUtil SNMPScanner CRYPTOGRAPHY AND ENCRYPTION

Encryption
TureCrypt
BitLocker
DriveCrpyt
Hash Tools
MD5 Hash
Hash Calc
Steganography
XPTools
ImageHide
Merge Streams
StegParty
gifShuffle
QuickStego
InvisibleSecrets



Spector Pro Covering Tracks

ELsave
Cleaner
EraserPro
Evidence Eliminator
Packet Craftin/Spoofing
Komodia
Hping2
PackEth
Packet Generator
Netscan
Scapy
Nemesis
Session Hijacking
Paros Proxy
Burp Suite
Firesheep
Hamster/Ferret
Ettecap
Hunt

### SNIFFING

Packet Capture
Wireshark
CACE
tcpdump
Capsa
OmniPeek
Windump
dnsstuff
EtherApe
Wireless
Kismet
Netstumbler
MAC Flooding/Spoofing
Macof
SMAC
ARP Poisoning
Cain
UfaSoft
WinARP Attacker

EZStego
HIBCCYC
OmniHidePro
Cryptanalysis
Cryptobench

### WIRELESS

Discovery Kismet NetStumbler insider NetSurveyor Packet Sniffing Cascade Pilot Omnipeek Comm View Capsa WEP/WPA Cracking Aircrack KisMac Wireless Security Auditor WepAttack WepCrack coWPatty Bluetooth BTBrowser BH Bluejack BTScanner Bluesnarfer Mobile Device Tracking Wheres My Droid Find My Phone GadgetTrack iHound

# TROJANS AND MALWARE

Wranners

Evasion Tools

wiappers
Elite Wrap
Monitoring Tools
HiJackThis
CurrPorts
Fport
Attack Tools
Netcat
Nemesis
IDS
Snort

WEB ATTACKS
Wfetch
Httprecon
ID Serve
WebSleuth
Black Widow
CookieDigger
Nstalker
NetBrute
SOL Injection



BSQL Hacker	ADMutate
Marathon	NIDSBench
SQL Injection Brute	IDSInformer
SQL Brute	
SQLNinja	Inundator
SQLGET	

The information in this cheat sheet is not only useful for passing the Certified Ethical Hacker Exam, but can act as a useful reference for penetration testers and those pursuing other security certifications.

However you choose to use it, we hope you've found it a helpful resource to keep around.

